Skip to main content
Log in

Purification and studies on characteristics of cholinesterases from Daphnia magna

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Due to their significant value in both economy and ecology, Daphnia had long been employed to investigate in vivo response of cholinesterase (ChE) in anticholinesterase exposures, whereas the type constitution and property of the enzyme remained unclear. A type of ChE was purified from Daphnia magna using a three-step procedure, i.e., Triton X-100 extraction, ammonium sulfate precipitation, and diethylaminoethyl (DEAE)-Sepharose™-Fast-Flow chromatography. According to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), molecular mass of the purified ChE was estimated to be 84 kDa. Based on substrate studies, the purified enzyme preferred butyrylthiocholine iodide (BTCh) [with maximum velocity (V max)/Michaelis constant (K m)=8.428 L/(min·mg protein)] to acetylthiocholine iodide (ATCh) [with V max/K m=5.346 L/(min·mg protein)] as its substrate. Activity of the purified enzyme was suppressed by high concentrations of either ATCh or BTCh. Inhibitor studies showed that the purified enzyme was more sensitive towards inhibition by tetraisopropylpyrophosphoramide (iso-OMPA) than by 1,5-bis(4-allyldimethylammoniumphenyl) pentan-3-one dibromide (BW284C51). Result of the study suggested that the purified ChE was more like a type of pseudocholinesterase, and it also suggested that Daphnia magna contained multiple types of ChE in their bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acey, R.A., Bailey, S., Healy, P., Chang, J., Unger, T.F., Hudson, R.A., 2002. A butyrylcholinesterase in the early development of the brine shrimp (Artemia salina) larvae: a target for phthalate ester embryotoxicity? Biochem. Biophys. Res. Commun., 299(4):659–662. [doi:10.1016/ S0006-291X(02)02716-X]

    Article  PubMed  CAS  Google Scholar 

  • Barata, C., Baird, D.J., Soares, A.M.V.M., Guilhermino, L., 2001. Biochemical factors contributing to response variation among resistant and sensitive clones of Daphnia magna Straus exposed to ethyl parathion. Ecotoxic. Environ. Safety, 49(2):155–163. [doi:10.1006/eesa.2001.2052]

    Article  CAS  Google Scholar 

  • Belzunces, L.P., Colin, M.E., 1991. Differential response of Apis mellifera acetylcholinesterase towards pirimicarb. Neuroreport, 2(5):265–268. [doi:10.1097/00001756-1991 05000-00013]

    Article  PubMed  CAS  Google Scholar 

  • Bocquené, G., Roig, A., Fournier, D., 1997. Cholinesterases from the common oyster (Crassostrea gigas): evidence for the presence of a soluble acetylcholinesterase insensitive to organophosphate and carbamate inhibitors. FEBS Lett., 407(3):261–266.

    Article  PubMed  Google Scholar 

  • Bourguet, D., Raymond, M., Fournier, D., Malcolm, C.A., Toutant, J.P., Arpagaus, M., 1996. The existence of two acetylcholinesterases in the mosquito Culex pipiens (Diptera: Culicidae). J. Neurochem., 67(5):2115–2123. [doi:10.1046/j.1471-4159.1996.67052115.x]

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M., 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein dye binding. Anal. Biochem., 72(1–2): 248–254. [doi:10.1016/0003-2697(76)90527-3]

    Article  PubMed  CAS  Google Scholar 

  • Brestkin, A.P., Maizel, E.B., Moralev, S.N., Novozhilov, K.V., Sazonova, I.N., 1985. Cholinesterases of aphids-1: Isolation, partial purification and some properties of cholinesterases from spring grain aphid Schizaphis gramina (Rond.). Insect Biochem., 15(2):309–314. [doi:10.1016/0020-1790(85)90019-8]

    Article  CAS  Google Scholar 

  • Carvalho, F.D., Machado, I., Martinez, M.S., Soares, A., Guilhermino, L., 2003. Use of atropine-treated Daphnia magna survival for detection of environmental contamination by acetylcholinesterase inhibitors. Ecotoxicol. Environ. Safety, 54(1):43–46. [doi:10.1016/S0147-6513 (02)00018-0]

    Article  PubMed  CAS  Google Scholar 

  • Chuiko, G.M., 2000. Comparative study of acetylcholinesterase and butyrylcholinesterase in brain and serum of several freshwater fish: specific activities and in vitro inhibition by DDVP, an organophosphorus pesticide. Comp. Biochem. Physiol. Part C: Pharmacol. Toxicol. Endocrinol., 127(3):233–242. [doi:10.1016/S0742-8413 (00)00150-X]

    Article  CAS  Google Scholar 

  • Coelho, S., Oliveira, R., Pereira, S., Musso, C., Domingues, I., Bhujel, R.C., Soares, A.M.V.M., Nogueira, A.J.A., 2011. Assessing lethal and sub-lethal effects of trichlorfon on different trophic levels. Aquat. Toxicol., 103(3–4): 191–198. [doi:10.1016/j.aquatox.2011.03.003]

    Article  PubMed  CAS  Google Scholar 

  • Dámasio, J., Guilhermino, L., Soares, A.M.V.M., Riva, M.C., Barata, C., 2007. Biochemical mechanisms of resistance in Daphnia magna exposed to the insecticide fenitrothion. Chemosphere, 70(1):74–82. [doi:10.1016/j.chemosphere.2007.07.026]

    Article  PubMed  Google Scholar 

  • den Besten, P.J., Valk, S., van Weerlee, E., Nolting, R.F., Postma, J.F., Everaarts, J.M., 2001. Bioaccumulation and biomarkers in the sea star Asterias rubens (Echinodermata: Asteroidea): a North Sea field study. Mar. Environ. Res., 51(4):365–387. [doi:10.1016/S0141-1136(00)00134-3]

    Article  Google Scholar 

  • Diamantino, T.C., Almeida, E., Soares, A.M.V.M., Guilhermino, L., 2007. Characterization of cholinesterases from Daphnia magna Straus and their inhibition by zinc. Bull. Environ. Contam. Toxicol., 71(2):219–225. [doi:10.1007/s00128-003-0153-7]

    Article  Google Scholar 

  • Doctor, B.P., Blick, D.W., Caranto, G., Castro, C.A., Gentry, M.K., Larrison, R., Maxwell, D.M., Murphy, M.R., Schutz, M., Waibel, K., et al., 1993. Cholinesterases as scavengers for organophosphorus compounds: protection of primate performance against soman toxicity. Chem. Biol. Int., 87(1–3):285–293. [doi:10.1016/0009-2797(93) 90056-5]

    Article  CAS  Google Scholar 

  • Duquesne, S., 2006. Effects of an organophosphate on Daphnia magna, at suborganismal and organismal levels: implications for population dynamics. Ecotoxicol. Environ. Safety, 65(2):145–150. [doi:10.1016/j.ecoenv.2006.01.008]

    Article  PubMed  CAS  Google Scholar 

  • Duquesne, S., Küster, E., 2010. Biochemical, metabolic, and behavioural responses and recovery of Daphnia magna after exposure to an organophosphate. Ecotoxicol. Environ. Safety, 73(3):353–359. [doi:10.1016/j.ecoenv.2009.11.008]

    Article  PubMed  CAS  Google Scholar 

  • Elhalwagy, M.E.A., Farid, H.E.A., Gh, F.A.A., Ammar, A.E., Kotb, G.A.M., 2010. Risk assessment induced by knapsack or conventional motor sprayer on pesticides applicators and farm workers in cotton season. Environ. Toxicol. Pharm., 30(2):110–115. [doi:10.1016/j.etap.2010.04.004]

    Article  CAS  Google Scholar 

  • Ellman, G.L., Courtney, K.D., Andres, V., 1961. Featherstone RM, a new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharm., 7(2):88–95. [doi:10.1016/0006-2952(61)90145-9]

    Article  PubMed  CAS  Google Scholar 

  • Forget, J., Beliaeff, B., Bocquene, G., 2003. Acetylcholinesterase activity in copepods (Tigriopus brevicornis) from the Vilaine River estuary, France, as a biomarker of neurotoxic contaminants. Aquat. Toxicol., 62(3):195–204. [doi:10.1016/S0166-445X(02)00084-X]

    Article  PubMed  CAS  Google Scholar 

  • Gälli, R., Rich, H.W., Scholtz, R., 1994. Toxicity of organophosphate insecticides and their metabolites to the water flea Daphnia magna, the microtox test and an acetylcholinesterase inhibition test. Aquat. Toxicol., 30(3):259–269. [doi:10.1016/0166-445X(94)90063-9]

    Article  Google Scholar 

  • Guilhermino, L., Lopes, M.C., Carvalho, A.P., Soares, A.M.V.M., 1996. Inhibition of acetylcholinesterase activity as effect criterion in acute tests with juvenile Daphnia magna. Chemosphere, 32(4):727–738. [doi:10. 1016/0045-6535(95)00360-6]

    Article  PubMed  CAS  Google Scholar 

  • Guo, S., Cao, S., Cheng, Y., 1993. Studies on the purification and properties of duck serum choline esterase. Prog. Biochem. Biophys., 20(2):119–124 (in Chinese).

    CAS  Google Scholar 

  • Ioannidis, P.M., Grafius, E.J., Wierenga, J.M., Whalon, M.E., Hollingworth, R.M., 1992. Selection, inheritance and characterization of carbofuran resistance in the Colorado potato beetle (Coleoptera: Chrysomeli-dae). Pest. Sci., 35(3):215–222. [doi:10.1002/ps.2780350304]

    Article  CAS  Google Scholar 

  • Jemec, A., Drobne. D., Tisler, T., Trebse, P., Ros, M., Sepcic, K., 2007. The applicability of acetylcholinesterase and glutathione S-transferase in Daphnia magna toxicity test. Comp. Biochem. Physiol. Part C: Pharmacol. Toxicol. Endocrinol., 144(4):303–309. [doi:10.1016/j.cbpc.2006.10.002]

    Article  Google Scholar 

  • Jung, J.H., Kim, S.J., Lee, T.K., Shim, W.J., Woo, S., Kim, D.J., Han, C.H., 2008. Biomarker responses in caged rockfish (Sebastes schlegeli) from Masan Bay and Haegeumgang. South Korea Mar. Poll. Bull., 57(6–12): 599–606. [doi:10.1016/j.marpolbul.2007.12.006]

    Article  CAS  Google Scholar 

  • Kato, Y., Tanaka, T., Miyata, T., 2004. Comparison of kinetic properties of a hydrophilic form of acetylcholinesterase purified from strains susceptible and resistant to carbamate and organophosphorus insecticides of green rice leafhopper (Nephotettix cincticeps Uhler). Pest. Biochem. Physiol., 79(2):64–73. [doi:10.1016/j.pestbp.2004.02.002]

    Article  CAS  Google Scholar 

  • Kaufer, D., Friedman, A., Seidman, S., Soreq, H., 1999. Anticholinesterase induce multigenic transcriptional feedback response suppressing cholinergic neurotransmission. Chem. Biol. Int., 119-120:349–360. [doi:10.1016/S0009-2797(99)00046-0]

    Article  CAS  Google Scholar 

  • Khattab, A.D., Ali, L.S., 2007. Immunoassays for avian butyrylcholinesterase: implications for ecotoxicological testing and clinical biomonitoring. Environ. Toxicol. Pharm., 24(3):275–285. [doi:10.1016/j.etap.2007.06.006]

    Article  CAS  Google Scholar 

  • Khattab, A.D., Walker, C.H., Mackness, M.I., Saphier, P.W., 1993. Purification and immunological characterization of pigeon serum butyrylcholinesterase: implications on environmental monitoring and toxicological testing of birds. Biochem. Pharm., 45(5):991–998. [doi:10.1016/0006-2952(93)90241-N]

    Article  PubMed  CAS  Google Scholar 

  • Kirby, M.F., Morris, S., Hurst, M., Kirby, S.J., Neall, P., Tylor, T., Fagg, A., 2000. The use of cholinesterase activity in flounder (Platichthys flesus) muscle tissue as a biomarker of neurotoxic contamination in UK estuaries. Mar. Poll. Bull., 40(9):780–791. [doi:10.1016/S0025-326X(00)000 69-2]

    Article  CAS  Google Scholar 

  • Kousba, A.A., Poet, T.S., Timchalk, C., 2003. Characterization of the in vitro kinetic interaction of chlorpyrifos-oxon with rat salivary cholinesterase: a potential biomonitoring matrix. Toxicology, 188(2–3):219–232. [doi:10.1016/ S0300-483X(03)00090-8]

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U.K., 1970. Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature, 227: 680–685. [doi:10.1038/227680a0]

    Article  PubMed  CAS  Google Scholar 

  • Lenz, D.E., Maxwell, D.M., Koplovitz, I., Clark, C.R., Capacio, B.R., Cerasoli, D.M., Federko, J.M., Luo, C.Y., Saxena, A., Doctor, B.P., et al., 2005. Protection against soman or VX poisoning by human butyrylcholinesterase in guinea pigs and cynomolgus monkeys. Chem. Biol. Int., 157:205–210. [doi:10.1016/j.cbi.2005.10.025]

    Article  Google Scholar 

  • Li, S., Ji, S., Wang, L., 2006. Study on the isolation, purification and the properties of cholinesterase from horse serum. Sci. Technol. Food Ind., 27(9):91–93 (in Chinese).

    Google Scholar 

  • Li, S.N., Tan, Y.J., 2011. Hormetic response of cholinesterase from Daphnia magna in chronic exposure to triazophos and chlorpyrifos. J. Environ. Sci., 23(5):852–859. [doi:10. 1016/S1001-0742(10)60516-5]

    Article  CAS  Google Scholar 

  • Maxwell, D.M., Saxena, A., Gordon, R.K., Doctor, B.P., 1999. Improvements in scavenger protection against organophosphorus agents by modification of cholinesterases. Chem. Biol. Int., 120:419–428. [doi:10.1016/S0009-2797(99)00054-X]

    Article  Google Scholar 

  • Mehrani, H., 2004. Simplified procedures for purification and stabilization of human plasma butyrylcholinesterase. Proc. Biochem., 39(7):877–882. [doi:10.1016/S0032-9592(03)00195-X]

    Article  CAS  Google Scholar 

  • Nolan, J., Schnitzerling, H.J., Schuntner, C.A., 1972. Multiple forms of acetylcholinesterase from resistantand susceptible strains of the cattle tick Boophilus microplus (Can). Pest. Biochem. Physiol., 2(1):85–94. [doi:10.1016/0048-3575(72)90010-7]

    Article  CAS  Google Scholar 

  • Peng, X., Tao, K., Teng, Y., Hang, X., Hou, T., 2008. Purification and characterization of acetylcholinesterase, a kind of pesticide target. J. Sichuan Univ. (Nat. Sci. Ed.), 45(1):189–193 (in Chinese).

    CAS  Google Scholar 

  • Principato, G.B., Talesa, V., Giovannini, E., Pascolini, R., Gabriella, R., 1988. Characterization of the soluble cholinesterase from Squilla mantis. Comp. Biochem. Physiol. Part C: Pharmacol. Toxicol. Endocrinol., 90: 413–416.

    Article  Google Scholar 

  • Printes, L.B., Fellowes, M.D.E., Callaghan, A., 2008. Clonal variation in acetylcholinesterase biomarkers and life history traits following OP exposure in Daphnia magna. Ecotoxicol. Environ. Safety, 71(2):519–526. [doi:10. 1016/j.ecoenv.2007.12.001]

    Article  PubMed  CAS  Google Scholar 

  • Printes, L.B., Fernandes, M.N., Espíndola, E.L.G., 2011. Laboratory measurements of biomarkers and individual performances in Chironomus xanthus to evaluate pesticide contamination of sediments in a river of southeastern Brazil. Ecotoxicol. Environ. Safety, 74(3):424–430. [doi:10. 1016/j.ecoenv.2010.10.033]

    Article  PubMed  CAS  Google Scholar 

  • Quintaneiro, C., Monteiro, M., Pastorinho, R., Soares, A.M.V.M., Nogueira, A.J.A., Morgado, F., Guilhermino, L., 2006. Environmental pollution and natural populations: a biomarkers case study from the Iberian Atlantic coast. Mar. Poll. Bull., 52(11):1406–1413. [doi:10.1016/ j.marpolbul.2006.04.002]

    Article  CAS  Google Scholar 

  • Raveh, L., Grunwald, J., Marcus, D., Papier, Y., Cohen, E., Ashani, Y., 1993. Human butyrylcholinesterase as a general prophylactic antidote for nerve agent toxicity: in vitro and in vivo quantitative characterization. Biochem. Pharm., 45(12):2465–2474. [doi:10.1016/0006-2952(93) 90228-O]

    Article  PubMed  CAS  Google Scholar 

  • Sáenz, L.A., Seibert, E.L., Zanette, J., Fiedler, H.D., Curtius, A.J., Ferreira, J.F., de Almeida, E.A., Marques, M.R.F., Bainy, A.C.D., 2010. Biochemical biomarkers and metals in Perna perna mussels from mariculture zones of Santa Catarina, Brazil. Ecotoxicol. Environ. Safety, 73(5): 796–804. [doi:10.1016/j.ecoenv.2010.02.015]

    Article  PubMed  Google Scholar 

  • Sanchez-Hernandez, J.C., Fossi, M.C., Leonzio, C., Focardi, S., Barra, R., Gavilan, J.F., Parra, O., 1998. Use of biochemical biomarkers as a screening tool to focus the chemical monitoring of organic pollutants in the Biobio river basin (Chile). Chemosphere, 37(4):699–710. [doi:10. 1016/S0045-6535(98)00085-X]

    Article  CAS  Google Scholar 

  • Stien, X., Percic, P., Gnassia-Barelli, M., Romeo, M., Lafaurie, M., 1998. Evaluation of biomarkers in caged fishes and mussels to assess the quality of waters in a bay of the NW Mediterranean Sea. Environ. Poll., 99(3):339–345. [doi:10.1016/S0269-7491(98)00013-X]

    Article  CAS  Google Scholar 

  • Sturm, A., Hansen, P.D., 1999. Altered cholinesterase and monooxygenase levels in Daphnia magna and Chironomus riparius exposed to environmental pollutants. Ecotoxicol. Environm. Safety, 42(1):9–15. [doi:10.1006/ eesa.1998.1721]

    Article  CAS  Google Scholar 

  • Talesa, V., Contenti, S., Principato, G.B., Pascolini, R., Giovannini, E., Rosi, G., 1992. Cholinesterases from Maia verrucosa and Palinurus vulgaris: a comparative study. Comp. Biochem. Physiol. Part C: Pharmacol. Toxicol. Endocrinol., 101(3):499–503.

    Article  Google Scholar 

  • Tripathi, R.K., O’Brien, R.D., 1972. Effect of organophosphates in vivo upon acetylcholinesterase isozyme from housefly head and thorax. Pest. Biochem. Physiol., 2(4):418–424. [doi:10.1016/0048-3575(73)90054-0]

    Article  Google Scholar 

  • van Oosterom, J., King, S.C., Negri, A., Humphrey, C., Mondon, J., 2010. Investigation of the mud crab (Scylla serrata) as a potential bio-monitoring species for tropical coastal marine environments of Australia. Mar. Poll. Bull., 60(2):283–290. [doi:10.1016/j.marpolbul.2009.09.007]

    Article  Google Scholar 

  • Vesela, S., Kuca, K., Jun, D., 2006. Toxicity of the nerve agent tabun to Daphnia magna, a new experimental species in military toxicology. Chem. Ecol., 22(2):175–180. [doi:10. 1080/02757540600579383]

    Article  CAS  Google Scholar 

  • Vesela, S., Kuca, K., Jun, D., 2008. Daphnia intoxicated by nerve agent tabun can be treated using human antidotes. Environm. Toxicol. Pharm., 25:329–333.

    Article  CAS  Google Scholar 

  • Villatte, F., Bachmann, T.T., 2002. How many genes encode cholinesterase in arthropods? Pest. Biochem. Physiol., 73(2):122–129. [doi:10.1016/S0048-3575(02)00002-0]

    Article  CAS  Google Scholar 

  • Wang, Y.X., Boeck, A.T., Duysen, E.G., van Keuren, M., Saunders, T.L., Lockridge, O., 2004. Resistance to organophosphorus agent toxicity in transgenic mice expressing the G117H mutant of human butyrylcholinesterase. Toxicol. Appl. Pharmcol., 196(3):356–366. [doi:10.1016/j.taap.2003.12.018]

    Article  CAS  Google Scholar 

  • Wierenga, J.M., Hollingworth, R., 1993. Inhibition of altered actylcholinesterases from insecticide-resistant Colorado potato beetle (Coleoptera: Chryso-melidae). J. Econ. Entomol., 86:673–679.

    CAS  Google Scholar 

  • Zhang, X., Shi, Y., Zhang, H., 1999. A preliminary study of the purification acetylcholinesterase from human cerehellum by immuno-affinity chromatography. J. First Mil. Med. Univ., 19(2):165–167 (in Chinese).

    Google Scholar 

  • Zhang, Y., Yang, B., 2006. Separation and purification of Recombinant Nippostrongylus brasiliensis acetylcholinesterase from culture medium of genetic engineering Pichia pastoris. Chin. J. Chrom., 24(1):39–41 (in Chinese).

    CAS  Google Scholar 

  • Zhou, M., Zhang, C., Richard, P., Haugland, R.P., 2000. Choline oxidase: a useful tool for high-throughput assays of acetylcholinesterase, phospholipase D, phosphayidylcholine-specific phospholipase C, and sphingomyelinase. Proc. SPIE, 3926:166–171. [doi:10.1117/12.380507]

    Article  CAS  Google Scholar 

  • Zhu, K.Y., Brindley, W.A., 1992. Molecular properties of acetylcholinesterase purified from Lygus hesperus Knight (Hemiptera: Miridae). Insect Biochem. Mol. Biol., 22(3):253–260. [doi:10.1016/0965-1748(92)90062-J]

    Article  CAS  Google Scholar 

  • Zhu, K.Y., Clark, M., 1994. Purification and characterization of acetyl-cholinesterase from the Colorado potato beetle, Leptinotarsa decemlineata (Say). Insect Biochem. Mol. Biol., 24(5):453–461. [doi:10.1016/0965-1748(94)90040-X]

    Article  CAS  Google Scholar 

  • Zhu, X.S., Meng, F.P., He, D.H., 2006. Purification and partial biochemical characterization of acetylcholinesterase from Scomberomorus Niphonius (Cuvier). J. Qingdao Univ. (E&T), 21(2):35–40 (in Chinese).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-nan Li.

Additional information

Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY12B07008) and the Department of Education of Zhejiang Province, China (No. 20070138)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Yx., Niu, Lz. & Li, Sn. Purification and studies on characteristics of cholinesterases from Daphnia magna . J. Zhejiang Univ. Sci. B 14, 325–335 (2013). https://doi.org/10.1631/jzus.B1200113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1200113

Key words

CLC number

Navigation