Skip to main content
Log in

Permeation of dimethyl sulfoxide into articular cartilage at subzero temperatures

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Osteochondral allografting has been proved to be a useful method to treat diseased or damaged areas of joint surfaces. Operational long-term stocks of grafts which supply a buffer between procurement and utilization would contribute to the commercialization or industrialization of this technology. Vitrification has been thought to be a promising method for successful preservation of articular cartilage (AC), but high concentration cryoprotectants (CPAs) are used which may cause high cellular toxicity. An effective way to reduce CPA toxicity is to increase CPA concentration gradually while the temperature is lowered. Understanding the mechanism of CPA permeation at subzero temperatures is important for designing the cryopreservation protocol. In this research, the permeation of dimethyl sulfoxide (Me2SO) in ovine AC at subzero temperatures was studied experimentally. Pretreated AC discs were exposed in Me2SO solutions for different time (0, 5, 15, 30, 50, 80, and 120 min) at three temperature levels (−10, −20, and −30 °C). The Me2SO concentration within the tissue was determined by ultraviolet (UV) spectrophotometry. The diffusion coefficients were estimated to be 0.85×10−6, 0.48×10−6, and 0.27×10−6 cm2/s at −10, −20, and −30 °C, respectively, and the corresponding activation energy was 29.23 kJ/mol. Numerical simulation was performed to compare two Me2SO addition protocols, and the results demonstrated that the total loading duration could be effectively reduced with the knowledge of permeation kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubin, P.P., Cheah, H.K., Davis, A.M., Gross, A.E., 2001. Long-term followup of fresh femoral osteochondral allografts for posttraumatic knee defects. Clin. Orthop. Relat. R, 391(Suppl.):318–327. [doi:10.1097/00003086-200110001-00029]

    Article  Google Scholar 

  • Brockbank, K.G.M., Chen, Z.Z., Song, Y.C., 2010. Vitrification of porcine articular cartilage. Cryobiology, 60(2): 217–221. [doi:10.1016/j.cryobiol.2009.12.003]

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, J.F., Dawson, P.E., 1991. Quantitation of dimethyl sulfoxide in solutions and tissues by high performance liquid chromatography. Cryobiology, 28(3):210–215. [doi:10.1016/0011-2240(91)90025-J]

    Article  PubMed  CAS  Google Scholar 

  • Carsi, B., Lopez-Lacomba, J.L., Sanz, J., Marco, F., Lopez-Duran, L., 2004. Cryoprotectant permeation through human articular cartilage. Osteoarthr. Cartilage, 12(10): 787–792. [doi:10.1016/j.joca.2004.06.013]

    Article  Google Scholar 

  • Chen, H.H., Zhou, X.M., Shu, Z.Q., Woods, E.J., Gao, D.Y., 2009. Electrical conductivity measurements for the ternary systems of glycerol/sodium chloride/water and ethylene glycol/sodium chloride/water and their applications in cryopreservation. Biopreserv. Biobank., 7(1): 13–17. [doi:10.1089/bio.2009.0001]

    Article  CAS  Google Scholar 

  • Chu, C.R., Convery, F.R., Akeson, W.H., Meyers, M., Amiel, D., 1999. Articular cartilage transplantation-clinical results in the knee. Clin. Orthop. Relat. R, 360:159–168. [doi:10.1097/00003086-199903000-00019]

    Article  Google Scholar 

  • Elford, B.C., 1970. Diffusion and distribution of dimethyl sulphoxide in the isolated guinea-pig taenia coli. J. Physiol., 209(1):187–208.

    PubMed  CAS  Google Scholar 

  • Elmoazzen, H.Y., Elliott, J.A.W., McGann, L.E., 2005. Cryoprotectant equilibration in tissues. Cryobiology, 51(1):85–91. [doi:10.1016/j.cryobiol.2005.05.003]

    Article  PubMed  CAS  Google Scholar 

  • Elmoazzen, H.Y., Poovadan, A., Law, G.K., Elliott, J.A.W., McGann, L.E., Jomha, N.M., 2007. Dimethyl sulfoxide toxicity kinetics in intact articular cartilage. Cell Tissue Bank., 8(2):125–133. [doi:10.1007/s10561-006-9023-y]

    Article  PubMed  CAS  Google Scholar 

  • Glenn, R.E., McCarty, E.C.Jr., Potter, H.G., Juliao, S.F., Gordon, J.F., Spindler, K.P., 2006. Comparison of fresh osteochondral autografts and allografts: a canine model. Am. J. Sports Med., 34(7):1084–1093. [doi:10.1177/0363546505284846]

    Article  PubMed  Google Scholar 

  • Hu, J.F., Wolfinbarger, L.Jr., 1994. Dimethyl sulfoxide concentration in fresh and cryopreserved porcine valved conduit tissues. Cryobiology, 31(5):461–467. [doi:10.1006/cryo.1994.1056]

    Article  PubMed  CAS  Google Scholar 

  • Hua, T.C., Ren, H.S., 1994. Cryobiomedical Technologies. Science Press, Beijing, China, p.120 (in Chinese).

    Google Scholar 

  • Jomha, N.M., McGann, L.E., Elmoazzen, H.Y., 2008. Modeling cryoprotectant toxicity in articular cartilage. J. Bone Joint Surg. Br., 90B(Suppl.):105.

    Google Scholar 

  • Jomha, N.M., Law, G.K., Abazari, A., Rekieh, K., Elliott, J.A. W., McGann, L.E., 2009. Permeation of several cryoprotectant agents into porcine articular cartilage. Cryobiology, 58(1):110–114. [doi:10.1016/j.cryobiol.2008.11.004]

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, I.N., Li, Y., Song, Y.C., Long, R.C.Jr., Sambanis, A., 2008. Cryoprotectant transport through articular cartilage for long-term storage: experimental and modeling studies. Osteoarthr. Cartilage, 16(11):1379–1386. [doi:10.1016/j.joca.2008.03.027]

    Article  CAS  Google Scholar 

  • Muldrew, K., Sykes, B., Schachar, N., McGann, L.E., 1996. Permeation kinetics of dimethyl sulfoxide in articular cartilage. Cryoletters, 17:331–340.

    CAS  Google Scholar 

  • Pegg, D.E., 1986. Equations for obtaining melting points and eutectic temperatures for the ternary system dimethyl sulphoxide/sodium chloride/water. Cryoletters, 7:387–394.

    CAS  Google Scholar 

  • Pegg, D.E., 2006. Immersion weighing as a method for monitoring the permeation of tissues by cryoprotectants. Cryobiology, 53(3):383. [doi:10.1016/j.cryobiol.2006.10.038]

    Article  Google Scholar 

  • Pegg, D.E., Hunt, C.J., Fong, L.P., 1987. Osmotic properties of the rabbit corneal endothelium and their relevance to cryopreservation. Cell Biochem. Biophys., 10(2):169–189.

    CAS  Google Scholar 

  • Pegg, D.E., Wusteman, M.C., Wang, L.H., 2006a. Cryopreservation of articular cartilage. Part 1: conventional cryopreservation methods. Cryobiology, 52(3):335–346. [doi:10.1016/j.cryobiol.2006.01.005]

    Article  PubMed  CAS  Google Scholar 

  • Pegg, D.E., Wang, L.H., Vaughan, D., Hunt, C.J., 2006b. Cryopreservation of articular cartilage. Part 2: mechanisms of cryoinjury. Cryobiology, 52(3):347–359. [doi:10. 1016/j.cryobiol.2006.01.007]

    Article  PubMed  CAS  Google Scholar 

  • Pegg, D.E., Wang, L.H., Vaughan, D., 2006c. Cryopreservation of articular cartilage. Part 3: the liquidus-tracking method. Cryobiology, 52(3):360–368. [doi:10.1016/j.cryobiol.2006.01.004]

    Article  PubMed  CAS  Google Scholar 

  • Raikin, S.M., 2009. Fresh osteochondral allografts for large-volume cystic osteochondral defects of the talus. J. Bone Joint Surg. Am., 91(12):2818–2826. [doi:10.2106/JBJS.I.00398]

    Article  PubMed  Google Scholar 

  • Rall, W.F., Fahy, G.M., 1985. Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nature, 313(6003):573–575. [doi:10.1038/313573a0]

    Article  PubMed  CAS  Google Scholar 

  • Sharma, R., Law, G.K., Rehieh, K., Abazari, A., Elliott, J.A. W., McGann, L.E., Jomha, N.M., 2007. A novel method to measure cryoprotectant permeation into intact articular cartilage. Cryobiology, 54(2):196–203. [doi:10.1016/j.cryobiol.2007.01.006]

    Article  PubMed  CAS  Google Scholar 

  • Song, Y.C., Khirabadi, B.S., Lightfoot, F., Brockbank, K.G. M., Taylor, M.J., 2000. Vitreous cryopreservation maintains the function of vascular grafts. Nat. Biotechnol., 18(3):296–299. [doi:10.1038/73737]

    Article  PubMed  CAS  Google Scholar 

  • Song, Y.C., An, Y.H., Kang, Q.K., Li, C.Y., Boggs, J.M., Chen, Z.Z., Taylor, M.J., Brockbank, K.G.M., 2004a. Vitreous preservation of articular cartilage grafts. J. Invest. Surg., 17(2):65–70. [doi:10.1080/08941930490422438]

    Article  PubMed  Google Scholar 

  • Song, Y.C., Lightfoot, F.G., Chen, Z.Z., Taylor, M.J., Brockbank, K.G.M., 2004b. Vitreous preservation of rabbit articular cartilage. Cell Preserv. Technol., 2(1):67–74. [doi:10.1089/153834404322708772]

    Article  CAS  Google Scholar 

  • Tomford, W.W., Fredericks, G.R., Mankin, H.J., 1984. Studies on cryopreservation of articular cartilage chondrocytes. J. Bone Joint Surg. Am., 66(2):253–259.

    PubMed  CAS  Google Scholar 

  • Wang, L.H., Pegg, D.E., Lorrison, J., Vaughan, D., Rooney, P., 2007. Further work on the cryopreservation of articular cartilage with particular reference to the liquidus tracking (LT) method. Cryobiology, 55(2):138–147. [doi:10.1016/j.cryobiol.2007.06.005]

    Article  PubMed  CAS  Google Scholar 

  • Williams, S.K., Amiel, D., Ball, S.T., Allen, R.T., Tontz, W.L., Emmerson, B.C.Jr., Badlani, N.M., Emery, S.C., Haghighi, P., Bugbee, W.D., 2007. Analysis of cartilage tissue on a cellular level in fresh osteochondral allograft retrievals. Am. J. Sports Med., 35(12):2022–2032. [doi:10.1177/0363546507305017]

    Article  PubMed  Google Scholar 

  • Wusteman, M.C., Pegg, D.E., Robinson, M.P., Wang, L.H., Fitch, P., 2002. Vitrification media: toxicity, permeability, and dielectric properties. Cryobiology, 44(1):24–37. [doi:10.1016/S0011-2240(02)00002-0]

    Article  PubMed  CAS  Google Scholar 

  • Wusteman, M.C., Simmonds, J., Vaughan, D., Pegg, D.E., 2008. Vitrification of rabbit tissues with propylene glycol and trehalose. Cryobiology, 56(1):62–71. [doi:10.1016/j.cryobiol.2007.10.177]

    Article  PubMed  CAS  Google Scholar 

  • Xia, Y., Farquhar, T., Burton-Wurster, N., Ray, E., Jelinski, L.W., 1994. Diffusion and relaxation mapping of cartilage-bone plugs and excised disks using microscopic magnetic resonance imaging. Magn. Reson. Med., 31(3): 273–282. [doi:10.1002/mrm.1910310306]

    Article  PubMed  CAS  Google Scholar 

  • Xu, H., Shi, H.C., Zang, W.F., Lu, D., 2009. An experimental research on cryopreserving rabbit trachea by vitrification. Cryobiology, 58(2):225–231. [doi:10.1016/j.cryobiol.2008.12.009]

    Article  PubMed  CAS  Google Scholar 

  • Yu, X.Y., Zhang, S.Z., Xu, M.J., Chen, G.M., 2010. Study on the permeation of dimethyl sulfoxide into articular cartilage. J. Eng. Thermophys., 31(8):1363–1366 (in Chinese).

    CAS  Google Scholar 

  • Zhang, S.Z., Pegg, D.E., 2007. Analysis of the permeation of cryoprotectants in cartilage. Cryobiology, 54(2):146–153. [doi:10.1016/j.cryobiol.2006.12.001]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-ming Chen.

Additional information

Project supported by the National Natural Science Foundation of China (No. 50606032) and the Graduate Innovation Research Program of Zhejiang Province (No. YK2008020), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Sz., Yu, Xy. & Chen, Gm. Permeation of dimethyl sulfoxide into articular cartilage at subzero temperatures. J. Zhejiang Univ. Sci. B 13, 213–220 (2012). https://doi.org/10.1631/jzus.B11a0041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B11a0041

Key words

CLC number

Navigation