Skip to main content
Log in

Simulation of biatrial conduction via different pathways during sinus rhythm with a detailed human atrial model

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

In order to better understand biatrial conduction, investigate various conduction pathways, and compare the differences between isotropic and anisotropic conductions in human atria, we present a simulation study of biatrial conduction with known/assumed conduction pathways using a recently developed human atrial model. In addition to known pathways: (1) Bachmann’s bundle (BB), (2) limbus of fossa ovalis (LFO), and (3) coronary sinus (CS), we also hypothesize that there exist two fast conduction bundles that connect the crista terminalis (CT), LFO, and CS. Our simulation demonstrates that use of these fast conduction bundles results in a conduction pattern consistent with experimental data. The comparison of isotropic and anisotropoic conductions in the BB case showed that the atrial working muscles had small effect on conduction time and conduction speed, although the conductivities assigned in anisotropic conduction were two to four times higher than the isotropic conduction. In conclusion, we suggest that the hypothesized intercaval bundles play a significant role in the biatrial conduction and that myofiber orientation has larger effects on the conduction system than the atrial working muscles. This study presents readers with new insights into human atrial conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, K.R., Ho, S.Y., Anderson, R.H., 1979. Location and vascular supply of sinus node in human heart. Br. Heart J., 41(1):28–32. [doi:10.1136/hrt.41.1.28]

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R.H., Cook, A.C., 2007. The structure and components of the atrial chambers. Europace, 9(S6):vi3–vi9. [doi:10.1093/europace/eum200]

    Article  PubMed  Google Scholar 

  • Anderson, R.H., Ho, S.Y., Becker, A.E., 2000. Anatomy of the human atrioventricular junctions revisited. Anat. Rec., 260(1):81–91. [doi:10.1002/1097-0185(20000901)260:1< 81::AID-AR90>3.0.CO;2-3]

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R.H., Yanni, J., Boyett, M.R., Chandler, N.J., Dobrzynski, H., 2009. The anatomy of the cardiac conduction system. Clin. Anat., 22(1):99–113. [doi:10.1002/ca.20700]

    Article  PubMed  Google Scholar 

  • Blanc, O., Virag, N., Vesin, J.M., Kappenberger, L., 2001. A computer model of human atria with reasonable computation load and realistic anatomical properties. IEEE Trans. Biomed. Eng., 48(11):1229–1237. [doi:10.1109/10.959315]

    Article  PubMed  CAS  Google Scholar 

  • Boineau, J.P., 1985. Atrial flutter: a synthesis of concepts. Circulation, 72(2):249–257. [doi:10.1161/01.CIR.72.2.249]

    Article  PubMed  CAS  Google Scholar 

  • Boineau, J.P., Schuessler, R.B., Hackel, D.B., Miller, C.B., Brockus, C.W., Wylds, A.C., 1980. Widespread distribution and rate differentiation of the atrial pacemaker complex. Am. J. Physiol., 239(3):H406–H415.

    PubMed  CAS  Google Scholar 

  • Boineau, J.P., Canavan, T.E., Schuessler, R.B., Cain, M.E., Corr, P.B., Cox, J.L., 1988. Demonstration of a widely distributed atrial pacemaker complex in the human-heart. Circulation, 77(6):1221–1237. [doi:10.1161/01.CIR.77. 6.1221]

    Article  PubMed  CAS  Google Scholar 

  • Bromberg, B.I., Hand, D.E., Schuessler, R.B., Boineau, J.P., 1995. Primary negativity does not predict dominant pacemaker location: implications for sinoatrial conduction. Am. J. Physiol., 269(3):H877–H887.

    PubMed  CAS  Google Scholar 

  • Burashnikov, A., Mannava, S., Antzelevitch, C., 2004. Transmembrane action potential heterogeneity in the canine isolated arterially perfused right atrium: effect of Ikr and Ikur/Ito block. Am. J. Physiol., 286(6):H2393–H2400. [doi:10.1152/ajpheart.01242.2003]

    CAS  Google Scholar 

  • Chandler, N.J., Greener, I.D., Tellez, J.O., Inada, S., Musa, H., Molenaar, P., Difrancesco, D., Baruscotti, M., Longhi, R., Anderson, R.H., et al., 2009. Molecular architecture of the human sinus node insights into the function of the cardiac pacemaker. Circulation, 119(12):1562–1575. [doi:10.1161/Circulationaha.108.804369]

    Article  PubMed  Google Scholar 

  • Chauvin, M., Shah, D.C., Haissaguerre, M., Marcellin, L., Brechenmacher, C., 2000. The anatomic basis of connections between the coronary sinus musculature and the left atrium in humans. Circulation, 101(6):647–652. [doi:10.1161/01.CIR.101.6.647]

    Article  PubMed  CAS  Google Scholar 

  • Cherry, E.M., Evans, S.J., 2008. Properties of two human atrial cell models in tissue: restitution, memory, propagation, and reentry. J. Theor. Biol., 254(3):674–690. [doi:10. 1016/j.jtbi.2008.06.030]

    Article  PubMed  Google Scholar 

  • Cherry, E.M., Hastings, H.M., Evans, S.J., 2008. Dynamics of human atrial cell models: restitution, memory, and intracellular calcium dynamics in single cells. Prog. Biophys. Mol. Biol., 98(1):24–37. [doi:10.1016/j.pbiomolbio.2008.05.002]

    Article  PubMed  CAS  Google Scholar 

  • Cosio, F.G., Martin-Penato, A., Pastor, A., Nunez, A., Montero, M.A., Cantale, C.P., Schames, S., 2004. Atrial activation mapping in sinus rhythm in the clinical electrophysiology laboratory: observations during Bachmann’s bundle block. J. Cardiovasc. Electrophysiol., 15(5):524–531. [doi:10.1046/j.1540-8167.2004.03403.x]

    Article  PubMed  Google Scholar 

  • Courtemanche, M., Ramirez, R.J., Nattel, S., 1998. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol., 44(1):H301–H321.

    Google Scholar 

  • de Ponti, R., Ho, S.Y., Salerno-Uriarte, J.A., Tritto, M., Spadacini, G., 2002. Electroanatomic analysis of sinus impulse propagation in normal human atria. J. Cardiovasc. Electrophysiol., 13(1):1–10. [doi:10.1046/j.1540-8167.2002.00001.x]

    Article  Google Scholar 

  • Deng, D.D., Xia, L., 2010. Study the Effect of Tissue Heterogeneity and Anisotropy in Atrial Fibrillation Based on a Human Atrial Model. Computing in Cardiology, p.433–436.

  • Deng, D., Jiao, P., Shou, G., Xia, L., 2009. Registering Myocardial Fiber Orientations with Heart Geometry Using Iterative Closest Points Algorithms. Medical Imaging, Parallel Processing of Images, and Optimization Techniques. Proc. SPIE, Yichang, China, p.74972P–74974P. [doi:10.1117/12.830695]

  • Deng, D., Jiao, P., Ye, X., Xia, L., 2012. An image-based model of the whole human heart with detailed anatomical structure and fiber orientation. Comput. Math. Methods Med., 2012:16. [doi:10.1155/2012/891070]

    Article  Google Scholar 

  • Dolber, P.C., Spach, M.S., 1989. Structure of canine Bachmann’s bundle related to propagation of excitation. Am. J. Physiol., 257(5 Pt 2):H1446–H1457.

    PubMed  CAS  Google Scholar 

  • Duytschaever, M., Danse, P., Eysbouts, S., Allessie, M., 2002. Is there an optimal pacing site to prevent atrial fibrillation? An experimental study in the chronically instrumented goat. J. Cardiovasc. Electrophysiol., 13(12):1264–1271. [doi:10.1046/j.1540-8167.2002.01264.x]

    Article  PubMed  Google Scholar 

  • Everett, T.H.T., Wilson, E.E., Verheule, S., Guerra, J.M., Foreman, S., Olgin, J.E., 2006. Structural atrial remodeling alters the substrate and spatiotemporal organization of atrial fibrillation: a comparison in canine models of structural and electrical atrial remodeling. Am. J. Physiol., 291(6):H2911–H2923. [doi:10.1152/ajpheart.01128.2005]

    CAS  Google Scholar 

  • Fedorov, V.V., Glukhov, A.V., Chang, R., Kostecki, G., Aferol, H., Hucker, W.J., Wuskell, J.P., Loew, L.M., Schuessler, R.B., Moazami, N., et al., 2010. Optical mapping of the isolated coronary-perfused human sinus node. J. Am. Coll. Cardiol., 56(17):1386–1394. [doi:10.1016/j.jacc.2010.03.098]

    Article  PubMed  Google Scholar 

  • Feng, J.L., Yue, L.X., Wang, Z.G., Nattel, S., 1998. Ionic mechanisms of regional action potential heterogeneity in the canine right atrium. Circ. Res., 83(5):541–551. [doi: 10.1161/01.RES.83.5.541]

    Article  PubMed  CAS  Google Scholar 

  • Gray, R.A., Pertsov, A.M., Jalife, J., 1996. Incomplete reentry and epicardial breakthrough patterns during atrial fibrillation in the sheep heart. Circulation, 94(10): 2649–2661. [doi:10.1161/01.CIR.94.10.2649]

    Article  PubMed  CAS  Google Scholar 

  • Hansson, A., Holm, M., Blomstrom, P., Johansson, R., Luhrs, C., Brandt, J., Olsson, S.B., 1998. Right atrial free wall conduction velocity and degree of anisotropy in patients with stable sinus rhythm studied during open heart surgery. Eur. Heart J., 19(2):293–300. [doi:10.1053/euhj.1997.0742]

    Article  PubMed  CAS  Google Scholar 

  • Harrild, D., Henriquez, C., 2000. A computer model of normal conduction in the human atria. Circ. Res., 87(7):E25–E36. [doi:10.1161/01.RES.87.7.e25]

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., Lux, R.L., Wyatt, R.F., Burgess, M.J., Abildskov, J.A., 1982. Relation of canine atrial activation sequence to anatomic landmarks. Am. J. Physiol., 242(3): H421–H428.

    PubMed  CAS  Google Scholar 

  • Henriquez, C.S., Muzikant, A.L., Smoak, C.K., 1996. Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: simulations in a three-dimensional bidomain model. J. Cardiovasc. Electrophysiol., 7(5):424–444. [doi:10.1111/j.1540-8167.1996.tb00548.x]

    Article  PubMed  CAS  Google Scholar 

  • Ho, S.Y., Sanchez-Quintana, D., 2009. The importance of atrial structure and fibers. Clin. Anat., 22(1):52–63. [doi:10.1002/Ca.20634]

    Article  PubMed  CAS  Google Scholar 

  • Ho, S.Y., Sanchez-Quintana, D., Cabrera, J.A., Anderson, R.H., 1999. Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol., 10(11):1525–1533. [doi:10.1111/j.1540-8167.1999.tb00211.x]

    Article  PubMed  CAS  Google Scholar 

  • Ho, S.Y., Anderson, R.H., Sanchez-Quintana, D., 2002a. Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovasc. Res., 54(2):325–336. [doi:10.1016/S0008-6363(02)00226-2]

    Article  PubMed  CAS  Google Scholar 

  • Ho, S.Y., Anderson, R.H., Sanchez-Quintana, D., 2002b. Gross structure of the atriums: more than an anatomic curiosity? Pacing Clin. Electrophysiol., 25(3):342–350. [doi:10.1046/j.1460-9592.2002.00342.x]

    Article  PubMed  Google Scholar 

  • Hucker, W.J., Mccain, M.L., Laughner, J.I., Iaizz, P.A., Efimov, I.R., 2008. Connexin 43 expression delineates two discrete pathways in the human atrioventricular junction. Anat. Rec., 291(2):204–215. [doi:10.1002/Ar.20631]

    Article  Google Scholar 

  • Jacquemet, V., Virag, N., Ihara, Z., Dang, L., Blanc, O., Zozor, S., Vesin, J.M., Kappenberger, L., Henriquez, C., 2003. Study of unipolar electrogram morphology in a computer model of atrial fibrillation. J. Cardiovasc. Electrophysiol., 14(10):S172–S179. [doi:10.1046/j.1540.8167.90308.x]

    Article  PubMed  Google Scholar 

  • James, T.N., 2002. Structure and function of the sinus node, AV node and his bundle of the human heart: Part I-structure. Prog. Cardiovasc. Dis., 45(3):235–267. [doi:10.1053/pcad.2002.130388]

    Article  PubMed  Google Scholar 

  • Jurkko, R., 2009. Atrial Electric Signal During Sinus Rhythm in Lone Paroxysmal Atrial Fibrillation. PhD Thesis, Helsinki University Central Hospital, Helsinki, p.1–108.

    Google Scholar 

  • Jurkko, R., Mantynen, V., Tapanainen, J.M., Montonen, J., Vaananen, H., Parikka, H., Toivonen, L., 2009. Non-invasive detection of conduction pathways to left atrium using magnetocardiography: validation by intra-cardiac electroanatomic mapping. Europace, 11(2): 169–177. [doi:10.1093/europace/eun335]

    Article  PubMed  Google Scholar 

  • Jurkko, R., Mantynen, V., Lehto, M., Tapanainen, J.M., Montonen, J., Parikka, H., Toivonen, L., 2010. Interatrial conduction in patients with paroxysmal atrial fibrillation and in healthy subjects. Int. J. Cardiol., 145(3):455–460. [doi:10.1016/j.ijcard.2009.05.064]

    Article  PubMed  Google Scholar 

  • Kamkin, A., Kiseleva, I., Isenberg, G., Wagner, K.D., Gunther, J., Theres, H., Scholz, H., 2003. Cardiac fibroblasts and the mechano-electric feedback mechanism in healthy and diseased hearts. Prog. Biophys. Mol. Biol., 82(1–3): 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Khaja, A., Flaker, G., 2005. Bachmann’s bundle: does it play a role in atrial fibrillation? Pacing Clin. Electrophysiol., 28(8):855–863. [doi:10.1111/j.1540-8159.2005.00168.x]

    Article  PubMed  Google Scholar 

  • Kojodjojo, P., Kanagaratnam, P., Markides, V., Davies, W., Peters, N., 2006. Age-related changes in human left and right atrial conduction. J. Cardiovasc. Electrophysiol., 17(2):120–127. [doi:10.1111/j.1540-8167.2006.00293.x]

    Article  PubMed  Google Scholar 

  • Koura, T., Hara, M., Takeuchi, S., Ota, K., Okada, Y., Miyoshi, S., Watanabe, A., Shiraiwa, K., Mitamura, H., Kodama, I., et al., 2002. Anisotropic conduction properties in canine atria analyzed by high-resolution optical mapping: preferential direction of conduction block changes from longitudinal to transverse with increasing age. Circulation, 105(17):2092–2098. [doi:10.1161/01.CIR.0000015506.36371.0D]

    Article  PubMed  Google Scholar 

  • Lemery, R., Guiraudon, G., Veinot, J.P., 2003. Anatomic description of Bachmann’s bundle and its relation to the atrial septum. Am. J. Cardiol., 91(12):1482–1485. [doi:10.1016/S0002-9149(03)00405-3]

    Article  PubMed  Google Scholar 

  • Lemery, R., Soucie, L., Martin, B., Tang, A.S.L., Green, M., Healey, J., 2004. Human study of biatrial electrical coupling-determinants of endocardial septal activation and conduction over interatrial connections. Circulation, 110(15):2083–2089. [doi:10.1161/01.Cir.0000144461.83835.A1]

    Article  PubMed  Google Scholar 

  • Lemery, R., Birnie, D., Tang, A.S., Green, M., Gollob, M., Hendry, M., Lau, E., 2007. Normal atrial activation and voltage during sinus rhythm in the human heart: an endocardial and epicardial mapping study in patients with a history of atrial fibrillation. J. Cardiovasc. Electrophysiol., 18(4):402–408. [doi:10.1111/j.1540-8167.2007.00762.x]

    Article  PubMed  Google Scholar 

  • Lorange, M., Gulrajani, R.M., 1993. A computer heart model incorporating anisotropic propagation. I. Model construction and simulation of normal activation. J. Electrocardiol., 26(4):245–261. [doi:10.1016/0022-0736(93)90047-H]

    Article  PubMed  CAS  Google Scholar 

  • Lu, W.X., Xu, Z.Y., Fu, Y.J., 1993. Microcomputer-based cardiac field simulation-model. Med. Biol. Eng. Comput., 31(4):384–387. [doi:10.1007/BF02446692]

    Article  PubMed  CAS  Google Scholar 

  • Maleckar, M.M., Greenstein, J.L., Giles, W.R., Trayanova, N.A., 2009. K+ current changes account for the rate dependence of the action potential in the human atrial myocyte. Am. J. Physiol. Heart Circ. Physiol., 297(4): H1398–H1410. [doi:10.1152/ajpheart.00411.2009]

    Article  PubMed  CAS  Google Scholar 

  • Markides, V., Schilling, R.J., Ho, S.Y., Chow, A.W., Davies, D.W., Peters, N.S., 2003. Characterization of left atrial activation in the intact human heart. Circulation, 107(5):733–739. [doi:10.1161/01.CIR.0000048140.31785.02]

    Article  PubMed  Google Scholar 

  • Matsuyama, T., Ishibashi-Ueda, H., Ikeda, Y., Yamada, Y., Okamura, H., Noda, T., Satomi, K., Suyama, K., Shimizu, W., Aihara, N., et al., 2010. The positional relationship between the coronary sinus musculature and the atrioventricular septal junction. Europace, 12(5):719–725. [doi:10.1093/europace/euq067]

    Article  PubMed  Google Scholar 

  • Nygren, A., Fiset, C., Firek, L., Clark, J.W., Lindblad, D.S., Clark, R.B., Giles, W.R., 1998. Mathematical model of an adult human atrial cell-the role of K+ currents in repolarization. Circ. Res., 82(1):63–81. [doi:10.1161/01.RES.82.1.63]

    Article  PubMed  CAS  Google Scholar 

  • Rijcken, J., Bovendeerd, P.H.M., Schoofs, A.J.G., van Campen, D.H., Arts, T., 1999. Optimization of cardiac fiber orientation for homogeneous fiber strain during ejection. Ann. Biomed. Eng., 27(3):289–297. [doi:10.1114/1.147]

    Article  PubMed  CAS  Google Scholar 

  • Rohmer, D., Sitek, A., Gullberg, G.T., 2007. Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging (DTMRI) data. Invest. Radiol., 42(11):777–789. [doi:10.1097/RLI.0b013e3181238330]

    Article  PubMed  Google Scholar 

  • Roithinger, F.X., Cheng, J., Sippensgroenewegen, A., Lee, R.J., Saxon, L.A., Scheinman, M.M., Lesh, M.D., 1999. Use of electroanatomic mapping to delineate transseptal atrial conduction in humans. Circulation, 100(17): 1791–1797. [doi:10.1161/01.CIR.100.17.1791]

    Article  PubMed  CAS  Google Scholar 

  • Sachse, F.B., Werner, C.D., Stenroos, M.H., Schulte, R.F., Zerfass, P., Dössel, O., 2000. Modeling the Anatomy of the Human Heart Using the Cryosection Images of the Visible Female Dataset. Proc. 3rd Users Conference of the National Library of Medicine’s Visible Human Project. Bethesda, USA.

  • Sanchez-Quintana, D., Anderson, R.H., Cabrera, J.A., Climent, V., Martin, R., Farre, J., Ho, S.Y., 2002. The terminal crest: morphological features relevant to electrophysiology. Heart, 88(4):406–411. [doi:10.1136/heart.88.4.406]

    Article  PubMed  CAS  Google Scholar 

  • Saremi, F., Channual, S., Krishnan, S., Gurudevan, S.V., Narula, J., Abolhoda, A., 2008. Bachmann bundle and its arterial supply: imaging with multidetector CT-implications for interatrial conduction abnormalities and arrhythmias. Radiology, 248(2):447–457. [doi:10.1148/radiol.2482071908]

    Article  PubMed  Google Scholar 

  • Seemann, G., Hoper, C., Sachse, F.B., Dossel, O., Holden, A.V., Zhang, H., 2006. Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Philos. Transact. A: Math Phys. Eng. Sci., 364(1843):1465–1481. [doi:10.1098/rsta.2006.1781]

    Article  CAS  Google Scholar 

  • Sun, H., Khoury, D.S., 2001. Electrical conduits within the inferior atrial region exhibit preferential roles in interatrial activation. J. Electrocardiol., 34(1):1–14. [doi:10.1054/jelc.2001.22065]

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., Zlochiver, S., Vikstrom, K.L., Yamazaki, M., Moreno, J., Klos, M., Zaitsev, A.V., Vaidyanathan, R., Auerbach, D.S., Landas, S., et al., 2007. Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure. Circ. Res., 101(8):839–847. [doi:10.1161/CIRCRESAHA.107.153858]

    Article  PubMed  CAS  Google Scholar 

  • Tapanainen, J.M., Jurkko, R., Holmqvist, F., Husser, D., Kongstad, O., Makijarvi, M., Toivonen, L., Platonov, P.G., 2009. Interatrial right-to-left conduction in patients with paroxysmal atrial fibrillation. J. Interv. Card. Electrophysiol., 25(2):117–122. [doi:10.1007/s10840008-9359-2]

    Article  PubMed  Google Scholar 

  • Tellez, J.O., Dobrzynski, H., Greener, I.D., Graham, G.M., Laing, E., Honjo, H., Hubbard, S.J., Boyett, M.R., Billeter, R., 2006. Differential expression of ion channel transcripts in atrial muscle and sinoatrial node in rabbit. Circ. Res., 99(12):1384–1393. [doi:10.1161/01.RES.0000251717.98379.69]

    Article  PubMed  CAS  Google Scholar 

  • ten Tusscher, K.H.W.J., Noble, D., Noble, P.J., Panfilov, A.V., 2004. A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol., 286(4):H1573–H1589. [doi:10.1152/ajpheart.00794.2003]

    Article  PubMed  Google Scholar 

  • Wang, K., Ho, S.Y., Gibson, D.G., Anderson, R.H., 1995. Architecture of atrial musculature in humans. Br. Heart J., 73(6):559–565. [doi:10.1136/hrt.73.6.559]

    Article  PubMed  CAS  Google Scholar 

  • Whiteley, J.P., 2006. An efficient numerical technique for the solution of the monodomain and bidomain equations. IEEE Trans. Biomed. Eng., 53(11):2139–2147. [doi:10.1109/Tbme:2006.879425]

    Article  PubMed  Google Scholar 

  • Wu, T.J., Yashima, M., Xie, F., Athill, C.A., Kim, Y.H., Fishbein, M.C., Qu, Z., Garfinkel, A., Weiss, J.N., Karagueuzian, H.S., et al., 1998. Role of pectinate muscle bundles in the generation and maintenance of intra-atrial reentry: potential implications for the mechanism of conversion between atrial fibrillation and atrial flutter. Circ. Res., 83(4):448–462. [doi:10.1161/01.RES.83.4.448]

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Holden, A.V., Kodama, I., Honjo, H., Lei, M., Varghese, T., Boyett, M.R., 2000. Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node. Am. J. Physiol. Heart Circ. Physiol., 279(1):H397–H421.

    PubMed  CAS  Google Scholar 

  • Zozor, S., Blanc, O., Jacquemet, V., Virag, N., Vesin, J.M., Pruvot, E., Kappenberger, L., Henriquez, C., 2003. A numerical scheme for modeling wavefront propagation on a monolayer of arbitrary geometry. IEEE Trans. Biomed. Eng., 50(4):412–420. [doi:10.1109/TBME.2003.809505]

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Xia.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2007CB512100), the National High-Tech R & D Program (863) of China (No. 2006AA02Z307), the National Natural Science Foundation of China (Nos. 81171421 and 61101046), and the Zhejiang Provincial Natural Science Foundation of China (No. Z1080300)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Dd., Gong, Yl., Shou, Gf. et al. Simulation of biatrial conduction via different pathways during sinus rhythm with a detailed human atrial model. J. Zhejiang Univ. Sci. B 13, 676–694 (2012). https://doi.org/10.1631/jzus.B1100339

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1100339

Key words

CLC number

Navigation