Advertisement

Journal of Zhejiang University SCIENCE B

, Volume 13, Issue 6, pp 423–437 | Cite as

Role of vitamin B12 on methylmalonyl-CoA mutase activity

  • Tóshiko Takahashi-Iñiguez
  • Enrique García-Hernandez
  • Roberto Arreguín-Espinosa
  • María Elena Flores
Review

Abstract

Vitamin B12 is an organometallic compound with important metabolic derivatives that act as cofactors of certain enzymes, which have been grouped into three subfamilies depending on their cofactors. Among them, methylmalonyl-CoA mutase (MCM) has been extensively studied. This enzyme catalyzes the reversible isomerization of L-methylmalonyl-CoA to succinyl-CoA using adenosylcobalamin (AdoCbl) as a cofactor participating in the generation of radicals that allow isomerization of the substrate. The crystal structure of MCM determined in Propionibacterium freudenreichii var. shermanii has helped to elucidate the role of this cofactor AdoCbl in the reaction to specify the mechanism by which radicals are generated from the coenzyme and to clarify the interactions between the enzyme, coenzyme, and substrate. The existence of human methylmalonic acidemia (MMA) due to the presence of mutations in MCM shows the importance of its role in metabolism. The recent crystallization of the human MCM has shown that despite being similar to the bacterial protein, there are significant differences in the structural organization of the two proteins. Recent studies have identified the involvement of an accessory protein called MMAA, which interacts with MCM to prevent MCM’s inactivation or acts as a chaperone to promote regeneration of inactivated enzyme. The interdisciplinary studies using this protein as a model in different organisms have helped to elucidate the mechanism of action of this isomerase, the impact of mutations at a functional level and their repercussion in the development and progression of MMA in humans. It is still necessary to study the mechanisms involved in more detail using new methods.

Key words

Vitamin B12 Methylmalonyl-CoA mutase (MCM) MMAA MeaB Methylmalonic academia (MMA) Protectase Reactivase 

CLC number

Q563+.4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abend, A., Bandarian, V., Nitsche, R., Stupperich, E., Rétey, J., Reed, G., 1999. Ethanolamine ammonia-lyase has a ‘base-on’ binding mode for coenzyme B12. Arch. Biochem. Biophys., 370(1):138–141. [doi:10.1006/abbi.1999.1382]PubMedCrossRefGoogle Scholar
  2. Andrews, E., Jansen, R., Crane, M., Cholin, S., McDonell, D., Ledley, F., 1993. Expression of recombinant human methylmalonyl CoA mutase: in primary mut fibroblast and Saccharomyces cerevisiae. Biochem. Med. Metab. Biol., 50(2):135–144. [doi:10.1006/bmmb.1993.1055]PubMedCrossRefGoogle Scholar
  3. Banerjee, R., 2001. Cobalamin Coenzymes and Vitamin B12. eLS, John Wiley & Sons, Ltd. [doi:10.1038/npg.els.0000666]Google Scholar
  4. Banerjee, R., Vlasie, M., 2002. Controlling the reactivity of radical intermediates by coenzyme B12 dependent methylmalonyl CoA mutase. Biochem. Soc. Transact., 30(4): 621–624. [doi:10.1042/bst0300621]CrossRefGoogle Scholar
  5. Barker, H., Weissbach, H., Smyth, R., 1958. A coenzyme containing pseudovitamin B12. PNAS, 44(11):1093–1097. [doi:10.1073/pnas.44.11.1093]PubMedCrossRefGoogle Scholar
  6. Berkovitch, F., Besad, E., Tang, K., Enns, E., Frey, P., Drenan C., 2004. A locking mechanism preventing radical damage in the absence of substrate, as revealed by the X-ray structure of lysine 5,6-aminomutase. PNAS, 101(45): 15870–15875. [doi:10.1073/pnas.0407074101]PubMedCrossRefGoogle Scholar
  7. Bobik, T.A., Rasche, M.E., 2001. Identification of the human methylmalonyl CoA racemase gene based on the analysis of prokaryotic gene arrangements. Implications for decoding the human genome. J. Biol. Chem., 276(40): 37194–37198. [doi:10.1074/jbc.M107232200]PubMedCrossRefGoogle Scholar
  8. Booker, S., Licht, S., Broderick, J., Stubbe, J., 1994. Coenzyme B12-dependent ribonucleotide reductase: evidence for the participation of five cysteine residues in ribonucleotide reduction. Biochemistry, 33(42):12676–12685. [doi:10.1021/bi00208a019]PubMedCrossRefGoogle Scholar
  9. Bradbeer, C., 1965. The clostridial fermentations of choline and ethanolamine. J. Biol. Chem., 240(12):4669–4674.PubMedGoogle Scholar
  10. Brooks, A., Vlasie, M., Banerjee, R., Brunold, T., 2004. Spectroscopic and computational studies on the adenosylcobalamin dependent methylmalonyl-CoA mutase: evaluation of enzymatic contributions to Co-C bond activation in the Co3+ ground state. J. Am. Chem. Soc., 126(26): 8167–8180. [doi:10.1021/ja039114b]PubMedCrossRefGoogle Scholar
  11. Brooks, A., Vlasie, M., Banerjee, R., Brunold, T., 2005. Co-C bond activation in methylmalonyl-CoA mutase by estabilization of the post-homolysis product Co2+ cobalamin. J. Am. Chem. Soc., 127(47):16522–16528. [doi:10.1021/ ja0503736]PubMedCrossRefGoogle Scholar
  12. Buckel, W., Golding, B., 1996. Glutamate and 2-methyleneglutarate mutase: from microbial curiosities to paradigms for coenzyme B12-dependent enzymes. Chem. Soc. Rev., 5(25):329–337. [doi:10.1039/CS9962500329]CrossRefGoogle Scholar
  13. Cannata, J.B., Focesi, A., Mazumder, R., Warner, R., Ochoa, S., 1965. Metabolism of propionic acid in animal tissues: properties of mammalian methylmalonyl coenzyme A mutase. J. Biol. Chem., 240(8):3249–3257.PubMedGoogle Scholar
  14. Chowdhury, S., Banerjee, R., 1999. Role of the dimethylbenzimidazole tail in the reaction catalyzed by coenzyme B12 dependent methylmalonyl-CoA mutase. Biochemistry, 38(46):15287–15294. [doi:10.1021/bi9914762]PubMedCrossRefGoogle Scholar
  15. Cracan, V., Banerjee, R., 2012. A novel coenzyme B12-dependent intercorversion of isovaleryl-CoA and pivalyl-CoA. J. Biol. Chem., 287(6):3723–3732. [doi:10.1074/jbc. M111.320051]PubMedCrossRefGoogle Scholar
  16. Cracan, V., Padovani, D., Banerjee, R., 2010. IcmF is a fusion between the radical B12 enzyme isobutyryl-CoA mutase and its G-protein chaperone. J. Biol. Chem., 285(1): 655–666. [doi:10.1074/jbc.M109.062182]PubMedCrossRefGoogle Scholar
  17. Dobson, M., Wai, T., Leclerc, D., Wilson, A., Wu, X., Doré, C., Hudson, T., Rosenblatt, D., Gravel, R., 2002. Identification of the gene responsible for the cblA complementation group of vitamin B12 responsive methylmalonic acidemia based on analysis of prokaryotic gene arrangements. PNAS, 99(24):15554–15559. [doi:10.1073/pnas.242614799]PubMedCrossRefGoogle Scholar
  18. Erb, T., Rétey, J., Fuchs, G., Alber, B., 2008. Ethylmalonyl-CoA mutase from Rhodobacter sphaeroides defines a new subclade of coenzyme B12-dependent acyl-CoA mutases. J. Biol. Chem., 283(47):32283–32293. [doi:10. 1074/jbc.M805527200]PubMedCrossRefGoogle Scholar
  19. Erfle, D., Clark, M., Nystrom, R., Johnson, C., 1964. Direct hydrogen transfer by methylmalonyl coenzyme A mutase. J. Biol. Chem., 239(6):1920–1924.PubMedGoogle Scholar
  20. Faust, L., Babior, B., 1992. Overexpression, purification and some properties of the AdoCbl-dependent ethanolamine ammonia-lyase from Salmonella typhimurium. Arch. Biochem. Biophys., 294(1):50–54. [doi:10.1016/0003-9861 (92)90135-J]PubMedCrossRefGoogle Scholar
  21. Fenton, W., Hack, A., Willard, H., Gertler, A., Rosenberg, E., 1982. Purification and properties of methylmalonyl coenzyme A mutase from human liver. Arch. Biochem. Biophys., 214(2):815–823. [doi:10.1016/0003-9861(82) 90088-1]PubMedCrossRefGoogle Scholar
  22. Fenton, W., Hack, A., Helfgott, D., Rosenberg, E., 1984. Biogenesis of the mitochondrial enzyme methylmalonyl CoA mutase. Synthesis and processing of a precursor in a cell system and in cultures cells. J. Biol. Chem., 259(10): 6616–6621.PubMedGoogle Scholar
  23. Flavin, M., Ortiz, P.J., Ochoa, S., 1955. Metabolism of propionic acid in animal tissues. Nature, 176(4487):823–826. [doi:10.1038/176823a0]PubMedCrossRefGoogle Scholar
  24. Forage, R., Foster, M., 1979. Resolution of the coenzyme B12-independent dehydratases of Klebsiella sp. and Citrobacter freundii. Biochim. Biophys. Acta Enzymol., 569(2):249–258. [doi:10.1016/0005-2744(79)90060-3]Google Scholar
  25. Froese, D., Dobson, M., White, P., Wu, X., Padovani, D., Banerjee, R., Haller, T., Gerlt, A., Surette, G., Gravel, R., 2009. Sleeping beauty mutase (sbm) is expressed and interacts with ygfd in Escherichia coli. Microbiol. Res., 164(1):1–8. [doi:10.1016/j.micres.2008.08.006]PubMedCrossRefGoogle Scholar
  26. Froese, D., Kochan, G., Muniz, J., Wu, X., Gileadi, C., Ugochukwu, E., Krysztofinska, E., Gravel, R., Oppermann, U., Yue, W., 2010. Structures of the human GTPase MMAA and vitamin B12-dependent methylmalonyl-CoA mutase and insight into their complex formation. J. Biol. Chem., 285(49):38204–38213. [doi:10.1074/jbc.M110.177717]PubMedCrossRefGoogle Scholar
  27. Guest, J., Friedman, S., Woods, D., Smith, E., 1962. A methyl analogue of cobamide coenzyme in relation to methionine synthesis by bacteria. Nature, 195(4839):340–342. [doi:10.1038/195340a0]PubMedCrossRefGoogle Scholar
  28. Hodgkin, D., Kramper, J., Mackay, M., Pickworth, J., Trueblood, K., White, J., 1956. Structure of vitamin B12. Nature, 178(4524):64–66. [doi:10.1038/178064a0]PubMedCrossRefGoogle Scholar
  29. Hubbard, P.A., Padovani, D., Labunska, T., Mahlstedt, S.A., Banerjee, R., Drennan, C.L., 2007. Crystal structure and mutagenesis of the metallochaperone MeaB: insight into the causes of methylmalonic aciduria. J. Biol. Chem., 282(43):31308–31316. [doi:10.1074/jbc.M704850200]PubMedCrossRefGoogle Scholar
  30. Janata, J., Kogekar, N., Fenton, W., 1997. Expression and kinetic characterization of methylmalonyl CoA mutase from patients with the mut phenotype: evidence for naturally occuring interallelic complementation. Hum. Mol. Genet., 6(9):1457–1464. [doi:10.1093/hmg/6.9.1457]PubMedCrossRefGoogle Scholar
  31. Jansen, R., Kalousek, F., Fenton, W., Rosenberg, E., Ledley, F., 1989. Cloning of full-length methylmalonyl CoA mutase from cDNA library using the polymerase chain reaction. Genomics, 4(2):198–205. [doi:10.1016/0888-7543(89) 90300-5]PubMedCrossRefGoogle Scholar
  32. Kambo, A., Sharma, V., Casteel, D., Woods, V., Pilz, R., Boss, G., 2005. Nitric oxide inhibits mammalian methylmalonyl CoA mutase. J. Biol. Chem., 280(11):10073–10082. [doi:10.1074/jbc.M411842200]PubMedCrossRefGoogle Scholar
  33. Katz, J., Chaikoff, I.L., 1955. The metabolism of propionate by rat liver slices and the formation of isosuccinic acid. J. Am. Chem. Soc., 77(9):2659–2660. [doi:10.1021/ja01614a105]CrossRefGoogle Scholar
  34. Korotkova, N., Lidstrom, M., 2004. MeaB is a component of the methylmalonyl CoA mutase complex required for protection of the enzyme from inactivation. J. Biol. Chem., 279(14):13652–13658. [doi:10.1074/jbc.M312852200]PubMedCrossRefGoogle Scholar
  35. Korotkova, N., Chistoserdova, L., Kuksa, V., Lidstrom, M., 2002. Glyoxalate regeneration pathway in the methylotroph Methylobacterium extorquens AM1. J. Bacteriol., 184(6):1750–1758. [doi:10.1128/JB.184.6.1750-1758.2002]PubMedCrossRefGoogle Scholar
  36. Kräutler, B., 2005. Vitamin B12: chemistry and biochemistry. Biochem. Soc. Trans., 33(Pt.4):806–810.PubMedGoogle Scholar
  37. Kraütler, B., Fiebre, W., Ostermann, S., Fasching, M., Ongania, K., Gruber, K., Kratky, C., Mikl, C., Siebert, A., Diekert, G., 2003. The cofactor of tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans is norpseudo-B12. New type of a natural corrinoid. Helv. Chim. Acta, 86(11):3698–3716. [doi:10.1002/hlca.200390313]CrossRefGoogle Scholar
  38. Ledley, F., Lumetta, M., Nguyen, N., Kolhouse, F., Allen, R., 1988. Molecular cloning of L-methylmalonyl-CoA mutase: gene transfer and analysis of mut cell lines. PNAS, 85(10):3518–3521. [doi:10.1073/pnas.85.10.3518]PubMedCrossRefGoogle Scholar
  39. Lee, A., Abeles, R., 1963. Purification and properties of diol dehydratase, an enzyme requiring a cobamide coenzyme. J. Biol. Chem., 238(7):2367–2373.PubMedGoogle Scholar
  40. Lehninger, A., Nelson, D., Cox, M., 1993. Principles of Biochemistry. Worth Publishers, New York, p.492–495, 533–535.Google Scholar
  41. Lenhert, G., Hodgkin, D., 1961. Structure of the 5,6-dimethylbenzimidazolylcobamide coenzyme. Nature, 192(4806):937–938. [doi:10.1038/192937a0]PubMedCrossRefGoogle Scholar
  42. Loferer, M., Webb, B., Grant, G., Liedl, K., 2003. Energetic and stereochemical effects of the protein environment on substrate: a theorical study of methylmalonyl CoA mutase. J. Am. Chem. Soc., 125(4):1072–1078. [doi:10.1021/ ja028906n]PubMedCrossRefGoogle Scholar
  43. Mancia, F., Evans, P., 1998. Conformational changes on substrate binding to methylmalonyl CoA mutase and new insights into the free radical mechanism. Structure, 6(6): 711–720. [doi:10.1016/S0969-2126(98)00073-2]PubMedCrossRefGoogle Scholar
  44. Mancia, F., Keep, N.H., Nakagawa, A., Leadlay, P.F., McSweeney, S., Rasmussen, B., Bösecke, P., Diat, O., Evans, P.R., 1996. How coenzyme B12 radicals are generated: the crystal structure of methylmalonyl-coenzyme A mutase at 2 Å resolution. Structure, 4(3):339–350. [doi:10.1016/S0969-2126(96)00037-8]PubMedCrossRefGoogle Scholar
  45. Mancia, F., Smiths, G., Evans, P., 1999. Crystal structure of substrate complexes of methylmalonyl-CoA mutase. Biochemistry, 38(25):7999–8005. [doi:10.1021/bi9903852]PubMedCrossRefGoogle Scholar
  46. Minot, M., Murphy, W., 1926. Treatment of pernicious anemia by a special diet. JAMA, 87(7):470–476. [doi:10.1001/ jama.1926.02680070016005]CrossRefGoogle Scholar
  47. Mohamed, H., Zou, X., Banka, R., Brown, K., van Eldik, R., 2005. Kinetic and thermodynamic studies on ligand substitution reactions and base-on/base-off equilibria of cyanoimidazolylcobamide, a vitamin B12 analog with an imidazole axial nucleoside. Dalton Trans., 21(4):782–787. [doi:10.1039/B414092C]Google Scholar
  48. Nham, S., Wilkemeyer, M., Ledley, F., 1990. Structure of the human methylmalonyl CoA mutase (MUT) locus. Genomics, 8(4):710–716. [doi:10.1016/0888-7543(90) 90259-W]PubMedCrossRefGoogle Scholar
  49. Padovani, D., Banerjee, R., 2006. Alternative pathways for radical dissipation in an active site mutant of B12 dependent Methylmalonyl-CoA mutase. Biochemistry, 45(9): 2951–2959. [doi:10.1021/bi051742d]PubMedCrossRefGoogle Scholar
  50. Padovani, D., Banerjee, R., 2006. Assembly and protection of the radical enzyme, methylmalonyl-CoA mutase, by its chaperone. Biochemistry, 45(30):9300–9306. [doi:10. 1021/bi0604532]PubMedCrossRefGoogle Scholar
  51. Padovani, D., Banerjee, R., 2009. A G-protein editor gates coenzyme B12 loading and is corrupted in methylmalonic aciduria. PNAS, 106(51):21567–21572. [doi:10.1073/ pnas.0908106106]PubMedCrossRefGoogle Scholar
  52. Padovani, D., Labunska, T., Banerjee, R., 2006. Energetics of interaction between the G-protein chaperone, MeaB, and B12-dependent methylmalonyl-CoA mutase. J. Biol. Chem., 281(26):17838–17844. [doi:10.1074/jbc.M600047200]PubMedCrossRefGoogle Scholar
  53. Peters, H., Nefedov, M., Salsero, J., Pitt, J., Fowler, K., Gazeas, S., Kahler, S., Ioannou, P., 2003. A knock-out mouse model for methylmalonic aciduria resulting in neonatal lethality. J. Biol. Chem., 278(52):52909–52913. [doi:10. 1074/jbc.M310533200]PubMedCrossRefGoogle Scholar
  54. Reeves, A., Brikun, I., Cernota, W., Leach, B., Gonzalez, M., Weber, M., 2006. Effects of methylmalonyl-CoA mutasa gene knockouts on erythromycin production in carbohydrate-base and oil based fementations of Saccharopolyspora erythraea. J. Ind. Microbiol. Biotechnol., 33(7): 600–609. [doi:10.1007/s10295-006-0094-3]PubMedCrossRefGoogle Scholar
  55. Reitzer, R., Gruber, K., Jogl, G., Wagner, U.G., Bothe, H., Buckel, W., Kratky, C., 1999. Glutamate mutase from Clostridium cochlearium: the structure of a coenzyme B12-dependent enzyme provides new mechanistic insights. Structure, 7(8):891–902. [doi:10.1016/S0969-2126(99) 80116-6]PubMedCrossRefGoogle Scholar
  56. Rickes, E., Brink, N., Koniuszy, F., Wood, T., Folkers, K., 1948. Crystalline Vitamin B12. Science, 107(2781):396–397. [doi:10.1126/science.107.2781.396]PubMedCrossRefGoogle Scholar
  57. Rosenblatt, D., Fenton, W., 2001. Inherited Disorders of Folato and Cobalamin Transport Metabolism. In: Scriver, C., Beaudet, A.L., Sly, W., Valle, D. (Eds.), The Metabolic and Molecular Basis of Inherited Diseases. Mc Graw Hill, New York, p.3897–3923.Google Scholar
  58. Sintchak, D., Arjara, G., Kellogg, B., Stubbe, J., Drennan, C., 2002. The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimmer. Nat. Struct. Biol., 9(4):293–300. [doi:10.1038/nsb774]PubMedCrossRefGoogle Scholar
  59. Smith, E., Parker, L., 1948. Purification of anti-pernicious anaemia factor. Biochem. J., 43(1):viii–ix.PubMedGoogle Scholar
  60. Somack, R., Costilow, R., 1973. Purification and properties of pyridoxal phosphate and coenzyme B12-dependent Dalpha-ornithine 5,4-aminomutase. Biochemistry, 12(14): 2597–2604. [doi:10.1021/bi00738a008]PubMedCrossRefGoogle Scholar
  61. Takahashi-Iñiguez, T., García-Arellano, H., Trujillo-Roldán, M., Flores, M.E., 2011. Protection and reactivation of human methylmalonyl-CoA mutase by MMAA protein. Biochem. Biophys. Res. Commun., 404(1):443–447. [doi:10.1016/j.bbrc.2010.11.141]PubMedCrossRefGoogle Scholar
  62. Thomä, N.H., Leadlay, P.F., 1996. Homology modeling of human methylmalonyl-CoA mutase: a structural basis for point mutations causing methylmalonic aciduria. Prot. Sci., 5(9):1922–1927. [doi:10.1002/pro.5560050919]CrossRefGoogle Scholar
  63. Thomä, N.H., Evans, P.R., Leadlay, P.F., 2000. Protection of radical intermediates at the active site of adenosylcobalamin dependent methymalonyl CoA mutase. Biochemistry, 39(31):9213–9221. [doi:10.1021/bi0004302]PubMedCrossRefGoogle Scholar
  64. Tobimatsu, T., Sakai, T., Hasida, Y., Mizoguchi, N., Miyoshi, S., Toraya, T., 1997. Heterologous expression, purification and properties of diol dehydratase, an adenosylcobalamin-dependent enzyme of Klebsiella oxytoca. Arch. Biochem. Biophys., 347(1):132–140. [doi:10.1006/abbi.1997.0325]PubMedCrossRefGoogle Scholar
  65. Toraya, T., 2000. Radical catalysis of B12 enzymes: structure, mechanism, inactivation and reactivation of diol and glycerol dehydratases. Cell. Mol. Life Sci., 57(1):106–127. [doi:10.1007/s000180050502]PubMedCrossRefGoogle Scholar
  66. Toraya, T., Fukui, S., 1977. Immunochemical evidence for the difference between coenzyme-B12-dependent diol dehydratase and glycerol dehydratase. Eur. J. Biochem., 76(1): 285–289. [doi:10.1111/j.1432-1033.1977.tb11594.x]PubMedCrossRefGoogle Scholar
  67. Toraya, T., Kuno, S., Fukui, S., 1980. Distribution of coenzyme B12-dependent diol dehydratase and glycerol dehydratase in selected genera of Enterobacteriaceae and Propionibacteriaceae. J. Bacteriol., 141(3):1439–1442.PubMedGoogle Scholar
  68. Vlasie, M., Banerjee, R., 2003. Tyrosine 89 accelerates Co-carbon bond homolysis in methylmalonyl-CoA mutase. J. Am. Chem. Soc., 125(18):5431–5435. [doi:10. 1021/ja029420+]PubMedCrossRefGoogle Scholar
  69. Vlasie, M., Banerjee, R., 2004. When a spectator turns killer: suicidal electron transfer from cobalamin in methylmalonyl CoA mutase. Biochemistry, 43(26):8410–8417. [doi:10.1021/bi036299q]PubMedCrossRefGoogle Scholar
  70. Vlasie, M., Chowdhury, S., Banerjee, R., 2002. Importance of the histidine ligand to coenzyme B12 in the reaction catalyzed by methylmalonyl CoA mutase. J. Biol. Chem., 277(21):18523–18527. [doi:10.1074/jbc.M111809200]PubMedCrossRefGoogle Scholar
  71. Wilcken, B., Wiley, V., Hammond, J., Carpenter, K., 2003. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N. Engl. J. Med., 348(23): 2304–2312. [doi:10.1056/NEJMoa025225]PubMedCrossRefGoogle Scholar
  72. Yamanishi, M., Yunoki, M., Tobimatsu, T., Sato, H., Matsui, J., Dokiya, A., Iuchi, Y., Oe, K., Suto, K., Shibata, N., et al., 2002. The crystal structure of coenzyme B12-dependent glycerol dehydratase in complex with cobalamin and propane-1,2-diol. Eur. J. Biochem., 269(18): 4484–4494. [doi:10.1046/j.1432-1033.2002.03151.x]PubMedCrossRefGoogle Scholar
  73. Zerbe-Burkhardt, K., Ratnatilleke, A., Philippon, N., Birch, A., Leiser, A., Vrijbloed, J., Hess, D., Hunziker, P., Robinson, J., 1998. Cloning, sequencing, expression, and insertional inactivation of the gene for the large subunit of coenzyme B12-dependent isobutyryl-CoA mutase from Streptomyces cinnamonensis. J. Biol. Chem., 273(11):6508–6517. [doi:10.1074/jbc.273.11.6508]PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tóshiko Takahashi-Iñiguez
    • 1
  • Enrique García-Hernandez
    • 2
  • Roberto Arreguín-Espinosa
    • 2
  • María Elena Flores
    • 1
  1. 1.Department of Molecular Biology and Biotechnology, Institute of Biomedical ResearchNational Autonomous University of MexicoMexicoMexico
  2. 2.Department of Chemistry of Biomacromolecules, Institute of ChemistryNational Autonomous University of MexicoMexicoMexico

Personalised recommendations