Skip to main content
Log in

Long-term high fructose and saturated fat diet affects plasma fatty acid profile in rats

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

As the consumption of fructose and saturated fatty acids (FAs) has greatly increased in western diets and is linked with an increased risk of metabolic syndrome, the aim of this study was to investigate the effects of a moderate (10 weeks) and a prolonged (30 weeks) high fructose and saturated fatty acid (HFS) diet on plasma FA composition in rats. The effects of a few weeks of HFS diet had already been described, but in this paper we tried to establish whether these effects persist or if they are modified after 10 or 30 weeks. We hypothesized that the plasma FA profile would be altered between 10 and 30 weeks of the HFS diet. Rats fed with either the HFS or a standard diet were tested after 10 weeks and again after 30 weeks. After 10 weeks of feeding, HFS-fed rats developed the metabolic syndrome, as manifested by an increase in fasting insulinemia, total cholesterol and triglyceride levels, as well as by impaired glucose tolerance. Furthermore, the plasma FA profile of the HFS group showed higher proportions of monounsaturated FAs like palmitoleic acid [16:1(n-7)] and oleic acid [18:1(n-9)], whereas the proportions of some polyunsaturated n-6 FAs, such as linoleic acid [18:2(n-6)] and arachidonic acid [20:4(n-6)], were lower than those in the control group. After 30 weeks of the HFS diet, we observed changes mainly in the levels of 16:1(n-7) (decreased) and 20:4(n-6) (increased). Together, our results suggest that an HFS diet could lead to an adaptive response of the plasma FA profile over time, in association with the development of the metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdullah, M.M., Riediger, N.N., Chen, Q., Zhao, Z., Azordegan, N., Xu, Z., Fischer, G., Othman, R.A., Pierce, G.N., Tappia, P.S., et al., 2009. Effects of long-term consumption of a high-fructose diet on conventional cardiovascular risk factors in Sprague-Dawley rats. Mol. Cell. Biochem., 327(1–2):247–256. [doi:10.1007/s11010-009-0063-z]

    Article  PubMed  CAS  Google Scholar 

  • Aro, A., 2003. Fatty acid composition of serum lipids: is this marker of fat intake still relevant for identifying metabolic and cardiovascular disorders? Nutr. Metab. Cardiovasc. Dis., 13(5):253–255. [doi:10.1016/S0939-4753 (03)80028-5]

    Article  PubMed  CAS  Google Scholar 

  • Astrup, A., Finer, N., 2000. Redefining type 2 diabetes: ‘diabesity’ or ‘obesity dependent diabetes mellitus’? Obes. Rev., 1(2):57–59. [doi:10.1046/j.1467-789x.2000.00013.x]

    Article  PubMed  CAS  Google Scholar 

  • Attie, A.D., Krauss, R.M., Gray-Keller, M.P., Brownlie, A., Miyazaki, M., Kastelein, J.J., Lusis, A.J., Stalenhoef, A.F.H., Stoehr, J.P., Hayden, M.R., et al., 2002. Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J. Lipid Res., 43(11):1899–1907. [doi:10.1194/jlr.M200189-JLR200]

    Article  PubMed  CAS  Google Scholar 

  • Balkau, B., Charles, M.A., Drisvsholm, T., Borch-Johnsen, K., Wareham, N., Yudkin, J.S., Morris, R., Zavaroni, I., van Dam, R., Feskins, E., et al., 2002. Frequency of the WHO metabolic syndrome in European cohorts, and an alternative definition of an insulin resistance syndrome. Diabetes Metab., 28(5):364–376.

    PubMed  Google Scholar 

  • Bantle, J.P., Laine, D.C., Thomas, J.W., 1986. Metabolic effects of dietary fructose and sucrose in types I and II diabetic subjects. JAMA, 256(23):3241–3246. [doi:10. 1001/jama.1986.03380230065027]

    Article  PubMed  CAS  Google Scholar 

  • Basciano, H., Federico, L., Adeli, K., 2005. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr. Metab., 2(1):5. [doi:10.1186/1743-7075-2-5]

    Article  Google Scholar 

  • Berkane, A.A., Nguyen, H.T.T., Tranchida, F., Waheed, A.A., Deyris, V., Tchiakpe, L., Fasano, C., Nicoletti, C., Desseaux, V., Ajandouz, E.H., et al., 2007. Proteomic of lipid rafts in the exocrine pancreas from diet-induced obese rats. Biochem. Biophys. Res. Commun., 355(3): 813–819. [doi:10.1016/j.bbrc.2007.02.037]

    Article  PubMed  CAS  Google Scholar 

  • Buettner, R., Scholmerich, J., Bolheimer, L.C., 2007. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity, 15(4):798–808. [doi:10.1038/oby.2007.608]

    Article  PubMed  CAS  Google Scholar 

  • Chen, L.Y., Zhu, W.H., Chen, Z.W., Dai, H.L., Ren, J.J., Chen, J.H., Chen, L.Q., Fang, L.Z., 2007. Relationship between hyperuricemia and metabolic syndrome. J. Zhejiang Univ.-Sci. B, 8(8):593–598. [doi:10.1631/jzus.2007. B0593]

    Article  PubMed  CAS  Google Scholar 

  • Chong, M.F., Fielding, B.A., Frayn, K.N., 2007. Mechanisms for the acute effect of fructose on postprandial lipemia. Am. J. Clin. Nutr., 85(6):1511–1520.

    PubMed  CAS  Google Scholar 

  • Clark, D.G., Rognstad, R., Katz, J., 1974. Lipogenesis in rat hepatocytes. J. Biol. Chem., 249(7):2028–2036.

    PubMed  CAS  Google Scholar 

  • Clifton, P.M., Nestel, P.J., 1998. Relationship between plasma insulin and erythrocyte fatty acid composition. Prostaglandins Leukot. Essent. Fatty Acids, 59(3):191–194. [doi: 10.1016/S0952-3278(98)90062-X]

    Article  PubMed  CAS  Google Scholar 

  • Clore, J.N., Harris, P.A., Li, J., Azzam, A., Gill, R., Zuelzer, W., Rizzo, W.B., Blackard, W.G., 2000. Changes in phosphatidylcholine fatty acid composition are associated with altered skeletal muscle insulin responsiveness in normal man. Metabolism, 49(2):232–238. [doi:10.1016/S0026-0495(00)91455-0]

    Article  PubMed  CAS  Google Scholar 

  • Comte, C., Bellenger, S., Bellenger, J., Tessier, C., Poisson, J.P., Narce, M., 2004. Effects of streptozotocin and dietary fructose on delta-6 desaturation in spontaneously hypertensive rat liver. Biochimie, 86(11):799–806. [doi:10. 1016/j.biochi.2004.10.002]

    Article  PubMed  CAS  Google Scholar 

  • Dai, S.K., McNeill, J.H., 1995. Fructose-induced hypertension in rats is concentration- and duration-dependent. J. Pharmacol. Toxicol. Methods, 33(2):101–107. [doi:10. 1016/1056-8719(94)00063-A]

    Article  PubMed  CAS  Google Scholar 

  • Dobrzyn, P., Dobrzyn, A., Miyazaki, M., Cohen, P., Asilmaz, E., Hardie, D.G., 2004. Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. PNAS, 101(17): 6409–6414. [doi:10.1073/pnas.0401627101]

    Article  PubMed  CAS  Google Scholar 

  • Dresner, A., Laurent, D., Marcucci, M., Griffin, M.E., Dufour, S., Cline, G.W., Slezak, L.A., Andersen, D.K., Hundal, R.S., Rothman, D.L., et al., 1999. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J. Clin. Invest., 103(2): 253–259. [doi:10.1172/JCI5001]

    Article  PubMed  CAS  Google Scholar 

  • Evans, J.L., Goldfine, I.D., Maddux, B.A., Grodsky, G.M., 2003. Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes, 52(1):1–8. [doi:10.2337/diabetes.52.1.1]

    Article  PubMed  CAS  Google Scholar 

  • Girard, A., Madani, S., El Boustani, E.S., Belleville, J., Prost, J., 2005. Changes in lipid metabolism and antioxidant defense status in spontaneously hypertensive rats and Wistar rats fed a diet enriched with fructose and saturated fatty acids. Nutrition, 21(2):240–248. [doi:10.1016/j.nut.2004.04.022]

    Article  PubMed  CAS  Google Scholar 

  • Griffin, M.E., Marcucci, M.J., Cline, G.W., Bell, K., Barucci, N., Lee, D., Goodyear, L.J., Kraegen, E.W., White, M.F., Shulman, G.I., 1999. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C θ and alterations in the insulin-signaling cascade. Diabetes, 48(6):1270–1274. [doi:10.2337/diabetes.48.6.1270]

    Article  PubMed  CAS  Google Scholar 

  • Grundy, S.M., 1998. Multifactorial causation of obesity: implications for prevention. Am. J. Clin. Nutr., 67(3): 563S–572S.

    PubMed  CAS  Google Scholar 

  • Havel, P.J., 2005. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr. Rev., 63(5):133–157. [doi:10.1111/j.1753-4887.2005.tb00132.x]

    Article  PubMed  Google Scholar 

  • Hu, Q., Ishii, E., Nalagawa, Y., 1994. Differential changes in relative levels of arachidonic acid in major phospholipids from rat tissues during the progression of diabetes. J. Biochem., 115(3):405–408.

    PubMed  CAS  Google Scholar 

  • Hulver, M.W., Berggren, J.R., Carper, M.J., Miyazaki, M., Ntambi, J.M., Hoffman, E.P., Thyfault, J.P., Stevens, R., Dohm, G.L., Houmard, J.A., et al., 2005. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab., 2(4):251–261. [doi:10.1016/j.cmet.2005.09.002]

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y.C., Ntambi, J.M., 1999. Regulation of stearoyl-CoA desaturase genes: role in cellular metabolism and preadipocyte differentiation. Biochem. Biophys. Res. Commun., 266(1):1–4. [doi:10.1006/bbrc.1999.1704]

    Article  PubMed  CAS  Google Scholar 

  • Ma, J., Folsom, A.R., Shahar, E., Eckfeldt, J.H., for the Atherosclerosis Risk in Communities (ARIC) Study Investigators, 1995. Plasma fatty acid composition as an indicator of habitual dietary fat intake in middle-aged adults. Am. J. Clin. Nutr., 62(3):564–571.

    PubMed  CAS  Google Scholar 

  • Maedler, K., Spinas, G.A., Dyntar, D., Moritz, W., Kaiser, N., Donath, M.Y., 2001. Distinct effects of saturated and monounsaturated fatty acids on β-cell turnover and function. Diabetes, 50(1):69–76. [doi:10.2337/diabetes.50.1.69]

    Article  PubMed  CAS  Google Scholar 

  • Maedler, K., Oberholzer, J., Bucher, P., Spinas, G.A., Donath, M.Y., 2003. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic β-cell turnover and function. Diabetes, 52(3):726–733. [doi:10.2337/diabetes.52.3.726]

    Article  PubMed  CAS  Google Scholar 

  • Malik, V.S., Schulze, M.B., Hu, F.B., 2006. Intake of sugar-sweetened beverages and weight gain: a systematic review. Am. J. Clin. Nutr., 84(2):274–288.

    PubMed  CAS  Google Scholar 

  • Masood, A., Stark, K.D., Salem, N.Jr., 2005. A simplified and efficient method for the analysis of fatty acid methyl esters suitable for large clinical studies. J. Lipid Res., 46(10):2299–2305. [doi:10.1194/jlr.D500022-JLR200]

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaka, T., Shimano, H., Yahagi, N., Amemiya-Kudo, M., Okazaki, H., Tamura, Y., Iizuka, Y., Ohashi, K., Tomita, S., Sekiya, et al., 2004. Insulin-independent induction of sterol regulatory element-binding protein-1c expression in the livers of streptozotocin-treated mice. Diabetes, 53(3):560–569. [doi:10.2337/diabetes.53.3.560]

    Article  PubMed  CAS  Google Scholar 

  • Mayes, P.A., 1993. Intermediary metabolism of fructose. Am. J. Clin. Nutr., 58(5):754S–765S.

    PubMed  CAS  Google Scholar 

  • Mayes, P.A., Laker, M.E., 1986. Effects of acute and long-term fructose administration on liver lipid metabolism. Prog. Biochem. Pharmacol., 21:33–58.

    PubMed  CAS  Google Scholar 

  • Mittendorfer, B., Sidossis, L.S., 2001. Mechanism for the increase in plasma triacylglycerol concentrations after consumption of short-term, high-carbohydrate diets. Am. J. Clin. Nutr., 73(5):892–899.

    PubMed  CAS  Google Scholar 

  • Miyazaki, M., Kim, Y.C., Ntambi, J.M., 2001. A lipogenic diet in mice with a disruption of the stearoyl-CoA desaturase 1 gene reveals a stringent requirement of endogenous monounsaturated fatty acids for triglyceride synthesis. J. Lipid Res., 42(7):1018–1024.

    PubMed  CAS  Google Scholar 

  • Miyazaki, M., Dobrzyn, A., Man, W.C., Chu, K., Sampath, H., Kim, H.J., Ntambi, J.M., 2004. Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and -independent mechanisms. J. Biol. Chem., 279(24):25164–25171. [doi:10.1074/jbc.M402781200]

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, M.T., Nara, T.Y., 2004. Structure, function, and dietary regulation of Δ6, Δ5, and Δ9 desaturases. Annu. Rev. Nutr., 24(1):345–376. [doi:10.1146/annurev.nutr.24.121803.063211]

    Article  PubMed  CAS  Google Scholar 

  • Ntambi, J.M., 1995. The regulation of stearoyl-CoA desaturase (SCD). Prog. Lipid Res., 34(2):139–150. [doi:10.1016/0163-7827(94)00010-J]

    Article  PubMed  CAS  Google Scholar 

  • Ntambi, J.M., Miyazaki, M., 2004. Regulation of stearoyl-CoA desaturases and role in metabolism. Prog. Lipid Res., 43(2):91–104. [doi:10.1016/S0163-7827(03)00039-0]

    Article  PubMed  CAS  Google Scholar 

  • Ntambi, J.M., Miyazaki, M., Stoehr, J.P., Lan, H., Kendziorski, C.M., Yandell, B.S., Song, Y., Cohen, P., Friedman, J.M., Attie, A.D., 2002. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. PNAS, 99(17): 11482–11486. [doi:10.1073/pnas.132384699]

    Article  PubMed  CAS  Google Scholar 

  • Park, S.K., Meyer, T.W., 1992. The effects of fructose feeding on glomerular structure in the rat. J. Am. Soc. Nephrol., 3(6):1330–1332.

    PubMed  CAS  Google Scholar 

  • Parks, E.J., Skokan, L.E., Timlin, M.T., Dingfelder, C.S., 2008. Dietary sugars stimulate fatty acid synthesis in adults. J. Nutr., 138(6):1039–1046.

    PubMed  CAS  Google Scholar 

  • Riccardi, G., Giacco, R., Rivellese, A.A., 2004. Dietary fat, insulin sensitivity and the metabolic syndrome. Clin. Nutr., 23(4):447–456. [doi:10.1016/j.clnu.2004.02.006]

    Article  PubMed  CAS  Google Scholar 

  • Rustan, A.C., Nenseter, M.S., Drevon, C.A., 1997. Omega-3 and omega-6 fatty acids in the insulin resistance syndrome. Lipid and lipoprotein metabolism and atherosclerosis. Ann. N. Y. Acad. Sci., 827:310–326. [doi:10. 1111/j.1749-6632.1997.tb51844.x]

    CAS  Google Scholar 

  • Sampath, H., Miyazaki, M., Dobrzyn, A., Ntambi, J.M., 2007. Stearoyl-CoA desaturase-1 mediates the pro-lipogenic effects of dietary saturated fat. J. Biol. Chem., 282(4): 2483–2493. [doi:10.1074/jbc.M610158200]

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Peiffer, C., Craig, D.L., Biden, T.J., 1999. Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J. Biol. Chem., 274(34): 24202–24210. [doi:10.1074/jbc.274.34.24202]

    Article  PubMed  CAS  Google Scholar 

  • Shimomura, I., Bashmakov, Y., Horton, J.D., 1999. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J. Biol. Chem., 274(42):30028–30032. [doi:10.1074/jbc.274.42.30028]

    Article  PubMed  CAS  Google Scholar 

  • Shiose, A., Sumimoto, H., 2000. Arachidonic acid and phosphorylation synergistically induce a conformational change of p47phox to activate the phagocyte NADPH oxidase. J. Biol. Chem., 275(18):13793–13801. [doi:10. 1074/jbc.275.18.1379]

    Article  PubMed  CAS  Google Scholar 

  • Simopoulos, A.P., 1997. Omega-6/omega-3 fatty acid ratio and trans fatty acids in non-insulin-dependent diabetes mellitus. Ann. N. Y. Acad. Sci., 827:327–338. [doi:10. 1111/j.1749-6632.1997.tb51845.x]

    Article  PubMed  CAS  Google Scholar 

  • Sjögren, P., Sierra-Johnson, J., Gertow, K., Rosell, M., Vessby, B., de Faire, U., Hamsten, A., Hellenius, M.L., Fisher, R.M., 2008. Fatty acid desaturases in human adipose tissue: relationships between gene expression, desaturation indexes and insulin resistance. Diabetologia, 51(2): 328–335. [doi:10.1007/s00125-007-0876-9]

    Article  PubMed  Google Scholar 

  • Storlien, L.H., Pan, D.A., Kriketos, A.D., Baur, L.A., 1993. High fat diet-induced insulin resistance. Lessons and implications from animal studies. Ann. N. Y. Acad. Sci., 683:82–90. [doi:10.1111/j.1749-6632.1993.tb35694.x]

    Article  PubMed  CAS  Google Scholar 

  • Takagawa, Y., Berger, M.E., Hori, M.T., Tuck, M.L., Golub, M.S., 2001. Long-term fructose feeding impairs vascular relaxation in rat mesenteric arteries. Am. J. Hypertens., 14(8):811–817. [doi:10.1016/S0895-7061(01)01298-5]

    Article  PubMed  CAS  Google Scholar 

  • Thorburn, A.W., Storlien, L.H., Jenkins, A.B., Khouri, S., Kraegen, E.W., 1989. Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats. Am. J. Clin. Nutr., 49(6):1155–1163.

    PubMed  CAS  Google Scholar 

  • Thresher, J.S., Podolin, D.A., Wei, Y., Mazzeo, R.S., Pagliassotti, M.J., 2000. Comparison of the effects of sucrose and fructose on insulin action and glucose tolerance. Am. J. Physiol. Regul. Integr. Comp. Physiol., 279(4):R1334–R1340.

    PubMed  CAS  Google Scholar 

  • Vazquez, M., Merlos, M., Adzet, T., Laguna, J., 1998. Influence of lipid profile and fatty acid composition on the oxidation behavior of rat and guinea pig low density lipoprotein. Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 119(2):311–316. [doi:10.1016/S0305-0491(97)00 331-3]

    Article  PubMed  CAS  Google Scholar 

  • Vessby, B., 2000. Dietary fat and insulin action in humans. Br. J. Nutr., 83(S1):S91–S96. [doi:10.1017/S000711450000 101X]

    Article  PubMed  CAS  Google Scholar 

  • Vraná, A., Fabry, P., Kazdová, L., 1978. Liver glycogen synthesis and glucose tolerance in rats adapted to diets with a high proportion of fructose or glucose. Nutr. Metab., 22(5):262–268. [doi:10.1159/000176221]

    Article  PubMed  Google Scholar 

  • Waters, K.M., Ntambi, J.M., 1994. Insulin and dietary fructose induce stearoyl-CoA desaturase 1 gene expression of diabetic mice. J. Biol. Chem., 269(44):27773–27777.

    PubMed  CAS  Google Scholar 

  • Wong, R.K., Pettit, A.I., Quinn, P.A., Jennings, S.C., Davies, J.E., Ng, L.L., 2003. Advanced glycation end products stimulate an enhanced neutrophil respiratory burst mediated through the activation of cytosolic phospholipase A2 and generation of arachidonic acid. Circulation, 108(15): 1858–1864. [doi:10.1161/01.CIR.0000089372.64585.3B]

    Article  PubMed  CAS  Google Scholar 

  • Zammit, V.A., Waterman, I.J., Topping, D., McKay, G., 2001. Insulin stimulation of hepatic triacylglycerol secretion and the etiology of insulin resistance. J. Nutr., 131(8): 2074–2077.

    PubMed  CAS  Google Scholar 

Recommended reading

  • Zhao, Z., Wu, T., Tang, H., Zhang, J., 2008. Influence of dietary conjugated linoleic acid on growth, fatty acid composition and hepatic lipogenesis in large yellow croaker (Pseudosciaena crocea R.). J. Zhejiang Univ.-Sci. B, 9(9):691–700. [doi:10.1631/jzus.B0820181]

    Article  PubMed  CAS  Google Scholar 

  • Liu, W., Lai, S., Lu, L., Shi, F., Zhang, J., Liu, Y., Yu, B., Tao, Z., Shen, J., Li, G., Wang, D., Li, J., Tian, Y., 2011. Effect of dietary fatty acids on serum parameters, fatty acid compositions, and liver histology in Shaoxing laying ducks. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 12(9):736–743. [doi:10.1631/jzus.B1000329]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Hiol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tranchida, F., Tchiakpe, L., Rakotoniaina, Z. et al. Long-term high fructose and saturated fat diet affects plasma fatty acid profile in rats. J. Zhejiang Univ. Sci. B 13, 307–317 (2012). https://doi.org/10.1631/jzus.B1100090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1100090

Key words

CLC number

Navigation