Skip to main content
Log in

Genome-wide analysis of OCT4 binding sites in glioblastoma cancer cells

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

OCT4, a member of the POU family of gene products, is an octamer motif-binding transcription factor. As it is known to play a crucial role in cancer processes including proliferation, invasion, and chemoradioresistance, it is important to identify the direct targets of OCT4 in living cancer cells. Here, chromatin immunoprecipitation-sequencing (ChIP-seq) was used to identify OCT4 binding sites in glioblastoma cancer cells. The results showed that 5438 OCT4 binding sites were localized in the glioblastoma cancer genome and that these sites contained a consensus sequence TTTkswTw (k=T or G, s=C or G, w=A or T), which occurred 3931 times in 2312 OCT4 binding regions. Furthermore, binding motifs of some other transcription factors were identified in OCT4 binding regions. Our results provide a valuable dataset for understanding gene regulation mechanisms underlying the function of OCT4 in glioblastoma cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atlasi, Y., Mowla, S.J., Ziaee, S.A., Bahrami, A.R., 2007. OCT-4, an embryonic stem cell marker, is highly expressed in bladder cancer. Int. J. Cancer, 120(7): 1598–1602. [doi:10.1002/ijc.22508]

    Article  PubMed  CAS  Google Scholar 

  • Barski, A., Zhao, K., 2009. Genomic location analysis by ChIP-seq. J. Cell. Biochem., 107(1):11–18. [doi:10.1002/jcb.22077]

    Article  PubMed  CAS  Google Scholar 

  • Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., Zhao, K., 2007. High-resolution profiling of histone methylations in the human genome. Cell, 129(4):823–837. [doi:10.1016/j.cell.2007.05.009]

    Article  PubMed  CAS  Google Scholar 

  • Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., et al., 2005. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122(6):947–956. [doi:10.1016/j.cell.2005.08.020]

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.C., Hsu, H.S., Chen, Y.W., Tsai, T.H., How, C.K., Wang, C.Y., Hung, S.C., Chang, Y.L., Tsai, M.L., Lee, Y.Y., et al., 2008. Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One, 3(7):e2637. [doi:10.1371/journal.pone.0002637]

    Article  PubMed  Google Scholar 

  • Cheng, C.J., Wu, Y.C., Shu, J.A., Ling, T.Y., Kuo, H.C., Wu, J.Y., Chang, E.E., Chang, S.C., Huang, Y.H., 2007. Aberrant expression and distribution of the OCT-4 transcription factor in seminomas. J. Biomed. Sci., 14(6):797–807. [doi:10.1007/s11373-007-9198-7]

    Article  PubMed  CAS  Google Scholar 

  • Crooks, G.E., Hon, G., Chandonia, J.M., Brenner, S.E., 2004. WebLogo: a sequence logo generator. Genome Res., 14(6):1188–1190. [doi:10.1101/gr.849004]

    Article  PubMed  CAS  Google Scholar 

  • Dekker, N., Cox, M., Boelens, R., Verrijzer, C.P., van der Vliet, P.C., Kaptein, R., 1993. Solution structure of the POU-specific DNA-binding domain of Oct-1. Nature, 362(6423):852–855. [doi:10.1038/362852a0]

    Article  PubMed  CAS  Google Scholar 

  • Fang, X., Yu, W., Li, L., Shao, J., Zhao, N., Chen, Q., Ye, Z., Lin, S.C., Zheng, S., Lin, B., 2010. ChIP-seq and functional analysis of the SOX2 gene in colorectal cancers. OMICS, 14(4):369–384. [doi:10.1089/omi.2010.0053]

    Article  PubMed  CAS  Google Scholar 

  • Fang, X., Yoon, J., Li, L., Yu, W., Shao, J., Hua, D., Zheng, S., Hood, L., Goodlett, D.R., Foltz, G., Lin, B., 2011. The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis. BMC Genomics, 12(1):11. [doi:10.1186/1471-2164-12-11]

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist, D.A., Fargo, D.C., Adelman, K., 2009. Using ChIP-chip and ChIP-seq to study the regulation of gene expression: genome-wide localization studies reveal widespread regulation of transcription elongation. Methods, 48(4):398–408. [doi:10.1016/j.ymeth.2009.02.024]

    Article  PubMed  CAS  Google Scholar 

  • Herr, W., Cleary, M.A., 1995. The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev., 9(14):1679–1693. [doi:10.1101/gad.9.14.1679]

    Article  PubMed  CAS  Google Scholar 

  • Ji, H., Jiang, H., Ma, W., Johnson, D.S., Myers, R.M., Wong, W.H., 2008. An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat. Biotechnol., 26(11): 1293–1300. [doi:10.1038/nbt.1505]

    Article  PubMed  CAS  Google Scholar 

  • Johnson, D.S., Mortazavi, A., Myers, R.M., Wold, B., 2007. Genome-wide mapping of in vivo protein-DNA interactions. Science, 316(5830):1497–1502. [doi:10.1126/science.1141319]

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.B., Greber, B., Arauzo-Bravo, M.J., Meyer, J., Park, K.I., Zaehres, H., Scholer, H.R., 2009a. Direct reprogramming of human neural stem cells by OCT4. Nature, 461(7264):643–649. [doi:10.1038/nature08436]

    Article  Google Scholar 

  • Kim, J.B., Sebastiano, V., Wu, G., Arauzo-Bravo, M.J., Sasse, P., Gentile, L., Ko, K., Ruau, D., Ehrich, M., van den Boom, D., et al., 2009b. Oct4-induced pluripotency in adult neural stem cells. Cell, 136(3):411–419. [doi:10.1016/j.cell.2009.01.023]

    Article  PubMed  CAS  Google Scholar 

  • Kraft, H.J., Mosselman, S., Smits, H.A., Hohenstein, P., Piek, E., Chen, Q., Artzt, K., van Zoelen, E.J., 1996. Oct-4 regulates alternative platelet-derived growth factor α receptor gene promoter in human embryonal carcinoma cells. J. Biol. Chem., 271(22):12873–12878. [doi:10.1074/jbc.271.22.12873]

    Article  PubMed  CAS  Google Scholar 

  • Lin, B., Wang, J., Hong, X., Yan, X., Hwang, D., Cho, J.H., Yi, D., Utleg, A.G., Fang, X., Schones, D.E., et al., 2009. Integrated expression profiling and ChIP-seq analyses of the growth inhibition response program of the androgen receptor. PLoS One, 4(8):e6589. [doi:10.1371/journal. pone.0006589]

    Article  PubMed  Google Scholar 

  • Marson, A., Levine, S.S., Cole, M.F., Frampton, G.M., Brambrink, T., Johnstone, S., Guenther, M.G., Johnston, W.K., Wernig, M., Newman, J., et al., 2008. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 134(3):521–533. [doi:10.1016/j.cell.2008.07.020]

    Article  PubMed  CAS  Google Scholar 

  • Monk, M., Holding, C., 2001. Human embryonic genes re-expressed in cancer cells. Oncogene, 20(56):8085–8091. [doi:10.1038/sj.onc.1205088]

    Article  PubMed  CAS  Google Scholar 

  • Okumura-Nakanishi, S., Saito, M., Niwa, H., Ishikawa, F., 2005. Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J. Biol. Chem., 280(7):5307–5317. [doi:10.1074/jbc.M410015200]

    Article  PubMed  CAS  Google Scholar 

  • Pesce, M., Wang, X., Wolgemuth, D.J., Scholer, H., 1998. Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech. Dev., 71(1–2):89–98. [doi:10.1016/S0925-4773(98)00002-1]

    Article  PubMed  CAS  Google Scholar 

  • Schoorlemmer, J., Jonk, L., Sanbing, S., van Puijenbroek, A., Feijen, A., Kruijer, W., 1995. Regulation of Oct-4 gene expression during differentiation of EC cells. Mol. Biol. Rep., 21(3):129–140. [doi:10.1007/BF00997235]

    Article  PubMed  CAS  Google Scholar 

  • Schreiber, E., Merchant, R.E., Wiestler, O.D., Fontana, A., 1994. Primary brain tumors differ in their expression of octamer deoxyribonucleic acid-binding transcription factors from long-term cultured glioma cell lines. Neurosurgery, 34(1):129–135. [doi:10.1227/00006123-199401000-00019]

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K., Yamanaka, S., 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4):663–676. [doi:10.1016/j.cell.2006.07.024]

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S., 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5):861–872. [doi:10.1016/j.cell.2007.11.019]

    Article  PubMed  CAS  Google Scholar 

  • Tay, Y., Zhang, J., Thomson, A.M., Lim, B., Rigoutsos, I., 2008. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 455(7216):1124–1128. [doi:10.1038/nature07299]

    Article  PubMed  CAS  Google Scholar 

  • Verrijzer, C.P., Alkema, M.J., van Weperen, W.W., van Leeuwen, H.C., Strating, M.J., van der Vliet, P.C., 1992. The DNA binding specificity of the bipartite POU domain and its subdomains. EMBO J., 11(13):4993–5003.

    PubMed  CAS  Google Scholar 

  • Visel, A., Blow, M.J., Li, Z., Zhang, T., Akiyama, J.A., Holt, A., Plajzer-Frick, I., Shoukry, M., Wright, C., Chen, F., et al., 2009. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature, 457(7231):854–858. [doi: 10.1038/nature07730]

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., Zhang, P., Liu, X., 2009. Short read DNA fragment anchoring algorithm. BMC Bioinformatics, 10(s1):S17. [doi:10.1186/1471-2105-10-S1-S17]

    Article  PubMed  Google Scholar 

  • Williams, D.C.Jr., Cai, M., Clore, G.M., 2004. Molecular basis for synergistic transcriptional activation by Oct1 and Sox2 revealed from the solution structure of the 42-kDa Oct1.Sox2.Hoxb1-DNA ternary transcription factor complex. J. Biol. Chem., 279(2):1449–1457. [doi:10.1074/jbc.M309790200]

    Article  PubMed  CAS  Google Scholar 

  • Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al., 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858):1917–1920. [doi:10.1126/science.1151526]

    Article  PubMed  CAS  Google Scholar 

  • Zeeberg, B.R., Qin, H., Narasimhan, S., Sunshine, M., Cao, H., Kane, D.W., Reimers, M., Stephens, R.M., Bryant, D., Burt, S.K., et al., 2005. High-throughput GoMiner, an ‘industrial-strength’ integrative gene ontology tool for interpretation of multiple-microarray experiments, with application to studies of Common Variable Immune Deficiency (CVID). BMC Bioinformatics, 6(1):168. [doi:10.1186/1471-2105-6-168]

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu Zheng or Biao-yang Lin.

Additional information

The two authors contributed equally to this work

Project supported by the Ministry of Science and Technology, China (Nos. 2004CB518707, 2006DFA32950, 2006AA02Z4A2, 2006AA02 A303, 2007DFC30360, and 2008DFA11320), and the National Natural Science Foundation of China (No. 81101580)

Electronic supplementary materials: The online version of this article (doi:10.1631/jzus.B1100059) contains supplementary materials, which are available to authorized users

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, Xf., Zhang, Wy., Zhao, N. et al. Genome-wide analysis of OCT4 binding sites in glioblastoma cancer cells. J. Zhejiang Univ. Sci. B 12, 812–819 (2011). https://doi.org/10.1631/jzus.B1100059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1100059

Key words

CLC number

Navigation