Abstract
Fatty acids and derivatives (FADs) are resources for natural antimicrobials. In order to screen for additional potent antimicrobial agents, the antimicrobial activities of FADs against Staphylococcus aureus were examined using a microplate assay. Monoglycerides of fatty acids were the most potent class of fatty acids, among which monotridecanoin possessed the most potent antimicrobial activity. The conventional quantitative structure-activity relationship (QSAR) and comparative molecular field analysis (CoMFA) were performed to establish two statistically reliable models (conventional QSAR: R 2=0.942, Q 2 LOO=0.910; CoMFA: R 2=0.979, Q 2=0.588, respectively). Improved forecasting can be achieved by the combination of these two models that provide a good insight into the structure-activity relationships of the FADs and that may be useful to design new FADs as antimicrobial agents.
This is a preview of subscription content, access via your institution.
References
Bergsson, G., Arnfinnsson, J., Steingrimsson, O., Thormar, H., 2001. In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrob. Agents Chemother., 45(11):3209–3212. [doi:10.1128/AAC.45.11.3209-3212.2001]
Branen, J.K., Davidson, P.M., 2004. Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. Int. J. Food Microbiol., 90(1):63–74. [doi:10.1016/S0168-1605(03)00172-7]
Caballero, J., Saavedera, M., Fernandez, M., Gonzalez-Nilo, F.D., 2007. Quantitative structure-activity relationship of rubiscolin analogues as delta opioid peptides using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). J. Agric. Food Chem., 55(20):8101–8104. [doi:10.1021/jf071031h]
Cramer, R.D., Patterson, D.E., Bunce, J.D., 1988. Comparative molecular-field analysis (CoMFA). I. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 110(18):5959–5967. [doi:10.1021/ja00226a005]
Dong, X.W., Liu, T., Yan, J.Y., Wu, P., Chen, J., Hu, Y.Z., 2009. Synthesis, biological evaluation and quantitative structure-activities relationship of flavonoids as vasorelaxant agents. Bioorg. Med. Chem., 17(2):716–726. [doi:10.1016/j.bmc.2008.11.052]
Ghose, A.K., Viswanadhan, V.N., Wendoloski, J.J., 1999. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1(1):55–68. [doi:10.1021/cc9800071]
Gonzalez, M.P., Teran, C., Saiz-Urra, L., Teijeira, M., 2008. Variable selection methods in QSAR: an overview. Curr. Top. Med. Chem., 8(18):1606–1627. [doi:10.2174/156802608786786552]
Habulin, M., Sabeder, S., Knez, Z., 2008. Enzymatic synthesis of sugar fatty acid esters in organic solvent and in supercritical carbon dioxide and their antimicrobial activity. J. Supercrit. Fluids, 45(3):338–345. [doi:10.1016/j.supflu.2008.01.002]
Hemmer, M.C., Steinhauer, V., Gasteiger, J., 1999. Deriving the 3D structure of organic molecules from their infrared spectra. Vibrat. Spectrosc., 19(1):151–164. [doi:10.1016/S0924-2031(99)00014-4]
Hou, C.T., Forman, R., 2000. Growth inhibition of plant pathogenic fungi by hydroxy fatty acids. J. Ind. Microbiol. Biotechnol., 24(4):275–276. [doi:10.1038/sj.jim.2900816]
Hsiao, C.P., Siebert, K.J., 1999. Modeling the inhibitory effects of organic acids on bacteria. Int. J. Food Microbiol., 47(3):189–201. [doi:10.1016/S0168-1605(99)00012-4]
Kabara, J.J., 1984. Antimicrobial agents derived from fatty-acids. J. Am. Oil Chem. Soc., 61(2):397–403. [doi:10.1007/BF02678802]
Kabara, J.J., Swieczkowski, D.M., Truant, J.P., Conley, A.J., Truant, J.P., 1972. Fatty-acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother., 2(1): 23–28. [doi:10.1128/AAC.2.1.23]
Kabara, J.J., Vrable, R., Liekenjie, M.S.F., 1977. Antimicrbial lipids-natural and synthetic fatty-acids and monoglycerides. Lipids, 12(9):753–759. [doi:10.1007/BF02570908]
Kelsey, J.A., Bayles, K.W., Shafii, B., McGuire, M.A., 2006. Fatty acids and monoacylglycerols inhibit growth of Staphylococcus aureus. Lipids, 41(10):951–961. [doi:10.1007/s11745-006-5048-z]
Kodicek, E., 1949. The effect of unsaturated fatty acids on Gram-positive bacteria. Symp. Soc. Exp. Biol., 3:217–232.
Mercader, A.G., Duchowicz, P.R., Fernandez, F.M., Castro, E.A., 2008a. Modified and enhanced replacement method for the selection of molecular descriptors in QSAR and QSPR theories. Chemom. Intell. Lab. Syst., 92(2): 138–144. [doi:10.1016/j.chemolab.2008.02.005]
Mercader, A.G., Duchowicz, P.R., Fernandez, F.M., Castro, E.A., 2008b. QSAR Search Tool Tutorial-Replacement method. Available from http://www.mathworks.com/matlabcentral/fileexchange/19578
Mercader, A.G., Duchowicz, P.R., Fernandez, F.M., Castro, E.A., 2010. Replacement method and enhanced replacement method versus the genetic algorithm approach for the selection of molecular descriptors in QSPR/QSAR theories. J. Chem. Inf. Model., 50(9):1542–1548. [doi:10.1021/ci100103r]
Nagle, J.K., 1990. Atomic polarizability and electronegativity. J. Am. Chem. Soc., 112(12):4741–4747. [doi:10.1021/ja00168a019]
Nakai, S.A., Siebert, K.J., 2003. Validation of bacterial growth inhibition models based on molecular properties of organic acids. Int. J. Food Microbiol., 86(3):249–255. [doi:10.1016/S0168-1605(02)00551-2]
Nakai, S.A., Siebert, K.J., 2004. Organic acid inhibition models for Listeria innocua, Listeria ivanovii, Pseudomonas aeruginosa and Oenococcus oeni. Food Microbiol., 21(1):67–72. [doi:10.1016/S0740-0020(03)00043-1]
Nobmann, P., Smith, A., Dunne, J., Henehan, G., Bourke, P., 2009. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms. Int. J. Food Microbiol., 128(3):440–445. [doi:10.1016/j.ijfoodmicro.2008.10.008]
Schmid, R., 2001. Recent advances in the description of the structure of water, the hydrophobic effect, and the like-dissolves-like rule. Monatshefte für Chemie, 132(11): 1295–1326. [doi:10.1007/s007060170019]
Todeschini, R., Gramatica, P., 1997. 3D-modelling and prediction by WHIM descriptors. Part 5. Theory development and chemical meaning of the WHIM descriptors. Quant. Struct.-Act. Relat., 16(2):113–119. [doi:10.1002/qsar.19970160203]
Todeschini, R., Consonni, V., 2000. Handbook of Molecular Descriptors. Wiley-VCH, Weinheim and New York. [doi:10.1002/9783527613106]
Wei, D.G., Yang, G.F., Wan, J., Zhan, C.G., 2005. Binding model construction of antifungal 2-aryl-4-chromanones using CoMFA, CoMSIA, and QSAR analyses. J. Agric. Food Chem., 53(5):1604–1611. [doi:10.1021/jf048313r]
Author information
Authors and Affiliations
Corresponding author
Additional information
The two authors contributed equally to this work
Project (No. 31071501) supported by the National Natural Science Foundation of China
Rights and permissions
About this article
Cite this article
Zhang, H., Zhang, L., Peng, Lj. et al. Quantitative structure-activity relationships of antimicrobial fatty acids and derivatives against Staphylococcus aureus . J. Zhejiang Univ. Sci. B 13, 83–93 (2012). https://doi.org/10.1631/jzus.B1100049
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/jzus.B1100049
Key words
- Fatty acid derivatives
- Quantitative structure-activity relationship
- Comparative molecular field analysis
- Antimicrobial activity
CLC number
- TS221