Skip to main content
Log in

Normal epigenetic inheritance in mice conceived by in vitro fertilization and embryo transfer

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

An association between assisted reproductive technology (ART) and neurobehavioral imprinting disorders has been reported in many studies, and it seems that ART may interfere with imprint reprogramming. However, it has never been explored whether epigenetic errors or imprinting disease susceptibility induced by ART can be inherited transgenerationally. Hence, the aim of this study was to determine the effect of in vitro fertilization and embryo transfer (IVF-ET) on transgenerational inheritance in an inbred mouse model. Mice derived from IVF-ET were outcrossed to wild-type C57BL/6J to obtain their female and male line F2 and F3 generations. Their behavior, morphology, histology, and DNA methylation status at several important differentially methylated regions (DMRs) were analyzed by Morris water maze, hematoxylin and eosin (H&E) staining, and bisulfite genomic sequencing. No significant differences in spatial learning or phenotypic abnormality were found in adults derived from IVF (F1) and female and male line F2 and F3 generations. A borderline trend of hypomethylation was found in H19 DMR CpG island 3 in the female line-derived F3 generation (0.40±0.118, P=0.086). Methylation status in H19/Igf2 DMR island 1, Igf2 DMR, KvDMR, and Snrpn DMR displayed normal patterns. Methylation percentage did not differ significantly from that of adults conceived naturally, and the expression of the genes they regulated was not disturbed. Transgenerational integrity, such as behavior, morphology, histology, and DNA methylation status, was maintained in these generations, which indicates that exposure of female germ cells to hormonal stimulation and gamete manipulation might not affect the individuals and their descendents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anway, M.D., Cupp, A.S., Uzumcu, M., Skinner, M.K., 2005. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science, 308(5727):1466–1469. [doi:10.1126/science.1108190]

    Article  PubMed  CAS  Google Scholar 

  • Anway, M.D., Leathers, C., Skinner, M.K., 2006. Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology, 147(12):5515–5523. [doi:10.1210/en.2006-0640]

    Article  PubMed  CAS  Google Scholar 

  • Bliek, J., Terhal, P., van den Bogaard, M.J., Maas, S., Hamel, B., Salieb-Beugelaar, G., Simon, M., Letteboer, T., van der Smagt, J., Kroes, H., et al., 2006. Hypomethylation of the H19 gene causes not only Silver-Russell syndrome (SRS) but also isolated asymmetry or an SRS-like phenotype. Am. J. Hum. Genet., 78(4):604–614. [doi:10.1086/502981]

    Article  PubMed  CAS  Google Scholar 

  • Chan, T.L., Yuen, S.T., Kong, C.K., Chan, Y.W., Chan, A.S., Ng, W.F., Tsui, W.Y., Lo, M.W., Tam, W.Y., Li, V.S., et al., 2006. Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat. Genet., 38(10):1178–1183. [doi:10.1038/ng1866]

    Article  PubMed  CAS  Google Scholar 

  • Chao, M.J., Ramagopalan, S.V., Herrera, B.M., Lincoln, M.R., Dyment, D.A., Sadovnick, A.D., Ebers, G.C., 2009. Epigenetics in multiple sclerosis susceptibility: difference in transgenerational risk localizes to the major histocompatibility complex. Hum. Mol. Genet., 18(2):261–266. [doi:10.1093/hmg/ddn353]

    Article  PubMed  CAS  Google Scholar 

  • Chin, H.J., Wang, C.K., 2001. Utero-tubal transfer of mouse embryos. Genesis, 30(2):77–81. [doi:10.1002/gene.1036]

    Article  PubMed  CAS  Google Scholar 

  • Cox, G.F., Bürger, J., Lip, V., 2002. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am. J. Hum. Genet., 71(1):162–164. [doi:10.1086/341096]

    Article  PubMed  CAS  Google Scholar 

  • Filipponi, D., Feil, R., 2009. Perturbation of genomic imprinting in oligozoospermia. Epigenetics, 4(1):27–30. [doi:10.4161/epi.4.1.7311]

    Article  PubMed  CAS  Google Scholar 

  • Gluckman, P.D., Hanson, M.A., 2004. Living with the past: evolution, development and patterns of disease. Science, 305(5691):1733–1736. [doi:10.1126/science.1095292]

    Article  PubMed  CAS  Google Scholar 

  • Hitchins, M.P., Wong, J.J., Suthers, G., Suter, C.M., Martin, D.I., Hawkins, N.J., Ward, R.L., 2007. Inheritance of a cancer-associated MLH1 germ-line epimutation. N. Engl. J. Med., 356(7):697–705. [doi:10.1056/NEJMoa064522]

    Article  PubMed  CAS  Google Scholar 

  • Jirtle, R.L., Skinner, M.K., 2007. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet., 8(4):253–262. [doi:10.1038/nrg2045]

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, H., Sato, A., Otsu, E., Hiura, H., Tomatsu, C., Utsunomiya, T., Sasaki, H., Yaegashi, N., Arima, T., 2007. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum. Mol. Genet., 16(21):2542–2551. [doi:10.1093/hmg/ddm187]

    Article  PubMed  CAS  Google Scholar 

  • Li, L.C., Dahiya, R., 2002. MethPrimer: designing primers for methylation PCRs. Bioinformatics, 18(11):1427–1431. [doi:10.1093/bioinformatics/18.11.1427]

    Article  PubMed  CAS  Google Scholar 

  • Li, T., Vu, T.H., Ulaner, G.A., Littman, E., Ling, J.Q., Chen, H.L., Hu, J.F., Behr, B., Giudice, L., Hoffman, A.R., 2005. IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch. Mol. Hum. Reprod., 11(9):631–640. [doi:10.1093/molehr/gah230]

    Article  PubMed  CAS  Google Scholar 

  • Lidegaard, O., Pinborg, A., Andersen, A.N., 2005. Imprinting diseases and IVF: Danish national IVF cohort study. Hum. Reprod., 20(4):950–954. [doi:10.1093/humrep/deh714]

    Article  PubMed  Google Scholar 

  • Luuk, H., Plaas, M., Raud, S., Innos, J., Sütt, S., Lasner, H., Abramov, U., Kurrikoff, K., Kõks, S., Vasar, E., 2009. Wfs1-deficient mice display impaired behavioural adaptation in stressful environment. Behav. Brain Res., 198(2): 334–345. [doi:10.1016/j.bbr.2008.11.007]

    Article  PubMed  CAS  Google Scholar 

  • Marques, C.J., Carvalho, F., Sousa, M., Barros, A., 2004. Genomic imprinting in disruptive spermatogenesis. Lancet, 363(9422):1700–1702. [doi:10.1016/S0140-6736(04)16256-9]

    Article  PubMed  CAS  Google Scholar 

  • Middelburg, K.J., Heineman, M.J., Bos, A.F., Hadders-Algra, M., 2008. Neuromotor, cognitive, language and behavioural outcome in children born following IVF or ICSI—a systematic review. Hum. Reprod. Update, 14(3): 219–231. [doi:10.1093/humupd/dmn005]

    Article  PubMed  CAS  Google Scholar 

  • Middelburg, K.J., Heineman, M.J., Bos, A.F., Pereboom, M., Fidler, V., Hadders-Algra, M., 2009. The Groningen ART cohort study: ovarian hyperstimulation and the in vitro procedure do not affect neurological outcome in infancy. Hum. Reprod., 24(12):3119–3126. [doi:10.1093/humrep/dep310]

    Article  PubMed  CAS  Google Scholar 

  • Miller, C.A., Sweatt, J.D., 2007. Covalent modification of DNA regulates memory formation. Neuron, 53(6):857–869. [doi:10.1016/j.neuron.2007.02.022]

    Article  PubMed  CAS  Google Scholar 

  • Morris, R., 1984. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods, 11(1):47–60. [doi:10.1016/0165-0270(84)90007-4]

    Article  PubMed  CAS  Google Scholar 

  • Nadeau, J.H., 2009. Transgenerational genetic effects on phenotypic variation and disease risk. Hum. Mol. Genet., 18(R2):R202–R210. [doi:10.1093/hmg/ddp366]

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, E.E., Anway, M.D., Stanfield, J., Skinner, M.K., 2008. Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease. Reproduction, 135(5):713–721. [doi:10.1530/REP-07-0542]

    Article  PubMed  CAS  Google Scholar 

  • Olson, C.K., Keppler-Noreuil, K.M., Romitti, P.A., Budelier, W.T., Ryan, G., Sparks, A.E., van Voorhis, B.J., 2005. In vitro fertilization is associated with an increase in major birth defects. Fertil. Steril., 84(5):1308–1315. [doi:10.1016/j.fertnstert.2005.03.086]

    Article  PubMed  Google Scholar 

  • Ørstavik, K.H., Eiklid, K., van der Hagen, C.B., Spetalen, S., Kierulf, K., Skjeldal, O., Buiting, K., 2003. Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection. Am. J. Hum. Genet., 72(1):218–219. [doi:10.1086/346030]

    Article  PubMed  Google Scholar 

  • Painter, R.C., Osmond, C., Gluckman, P., Hanson, M., Phillips, D.I., Roseboom, T.J., 2008. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG, 115(10):1243–1249. [doi:10.1111/j.1471-0528.2008.01822.x]

    Article  PubMed  CAS  Google Scholar 

  • Richards, E.J., 2006. Inherited epigenetic variation—revisiting soft inheritance. Nat. Rev. Genet., 7:395–401. [doi:10.1038/nrg1834]

    Article  PubMed  CAS  Google Scholar 

  • Schneider, S., Kaufmann, W., Buesen, R., van Ravenzwaay, B., 2008. Vinclozolin—the lack of a transgenerational effect after oral maternal exposure during organogenesis. Reprod. Toxicol., 25(3):352–360. [doi:10.1016/j.reprotox.2008.04.001]

    Article  PubMed  CAS  Google Scholar 

  • Skinner, M.K., 2008. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod. Toxicol., 25(1):2–6. [doi:10.1016/j.reprotox.2007.09.001]

    Article  PubMed  CAS  Google Scholar 

  • Stouder, C., Deutsch, S., Paoloni-Giacobino, A., 2009. Superovulation in mice alters the methylation pattern of imprinted genes in the sperm of the offspring. Reprod. Toxicol., 28(4):536–541. [doi:10.1016/j.reprotox.2009.06.009]

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw, N.C., Whitelaw, E., 2008. Transgenerational epigenetic inheritance in health and disease. Curr. Opin. Genet. Dev., 18(3):273–279. [doi:10.1016/j.gde.2008.07.001]

    Article  PubMed  CAS  Google Scholar 

  • Xing, Y., Shi, S., Le, L., Lee, C.A., Silver-Morse, L., Li, W.X., 2007. Evidence for transgenerational transmission of epigenetic tumor susceptibility in Drosophila. PLoS Genet., 3(9):1598–1606. [doi:10.1371/journal.pgen.0030151]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Jin.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2007CB948104), the National Natural Science Foundation of China (No. 81070532), and the Zhejiang Provincial Natural Science Foundation of China (No. Z207021)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Le, F., Wang, Ly. et al. Normal epigenetic inheritance in mice conceived by in vitro fertilization and embryo transfer. J. Zhejiang Univ. Sci. B 12, 796–804 (2011). https://doi.org/10.1631/jzus.B1000411

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1000411

Key words

CLC number

Navigation