Skip to main content
Log in

Midazolam in rabbits terminates dysrhythmias caused by intracerebroventricular ropivacaine

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

The current study was designed to investigate the mechanisms by which ropivacaine may act within the central nervous system (CNS) to produce cardiotoxicity. Eighty New Zealand rabbits were divided into four groups randomly. In Group 1, 20 rabbits received intracerebroventricular (icv) saline, and then received icv ropivacaine 30 min later. In Group 2, 20 rabbits received icv ropivacaine. Whenever dysrhythmias continued for more than 5 min, 0.1 ml saline was administered into the left cerebral ventricle. Ten minutes later, 0.1 ml midazolam was given into the left lateral ventricle. In Group 3, 20 rabbits received icv ropivacaine, and once the dysrhythmias developed, the inspired isoflurane concentration was increased from 0.75% to 1.50%. In Group 4, 20 animals received an intravenous (iv) phenylephrine infusion until dysrhythmias occurred. In Group 1, the rabbits did not develop dysrhythmias in response to icv saline, whereas dysrhythmias did develop in these animals after icv ropivacaine. In Group 2, icv saline had no effect on the dysrhythmias; however, icv midazolam terminated cardiac dysrhythmias. In Group 3, an increase in the concentration of the inspired isoflurane had no effect on dysrhythmias. In Group 4, icv midazolam had no effect on dysrhythmias in response to iv phenylephrine. Ropivacaine administered directly into the CNS is capable of producing cardiac dysrhythmias; midazolam terminated dysrhythmias presumably by potentiation of γ-aminobutyric acid (GABA) receptor activity. Our results suggest that ropivacaine produces some of its cardiotoxicity not only by the direct cardiotoxicity of the drug, but also by the CNS effects of ropivacaine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, R., Beharry, K., Modanlou, H., 2000. Changes in cerebral venous prostanoids during midazolam-induced cerebrovascular hypotension in newborn piglets. Crit. Care Med., 28(7):2429–2436. [doi:10.1097/00003246-200007000-00040]

    Article  PubMed  CAS  Google Scholar 

  • Asl, B.H., Hassanzadeh, K., Khezri, E., Mohammadi, S., 2008. Evaluation the effects of dextromethorphan and midazolam on morphine induced tolerance and dependence in mice. Pak. J. Biol. Sci., 11(13):1690–1695. [doi:10.3923/pjbs.2008.1690.1695]

    Article  PubMed  CAS  Google Scholar 

  • Bilir, A., Yelken, B., Kaygisiz, Z., Senturk, Y., 2006. The effects of dopexamine in bupivacaine and ropivacaine induced cardiotoxicity in isolated rat heart. Saudi. Med. J., 27(8):1194–1198.

    PubMed  Google Scholar 

  • Copeland, S.E., Ladd, L.A., Gu, X.Q., Mather, L.E., 2008. The effects of general anesthesia on the central nervous and cardiovascular system toxicity of local anesthetics. Anesth. Analg., 106(5):1429–1439. [doi:10.1213/ane.0b013e31816d12af]

    Article  PubMed  CAS  Google Scholar 

  • Dony, P., Dewinde, V., Vanderick, B., Cuignet, O., Gautier, P., Legrand, E., Lavand’homme, P., de Kock, M., 2000. The comparative toxicity of ropivacaine and bupivacaine at equipotent doses in rats. Anesth. Analg., 91(6): 1489–1492. [doi:10.1097/00000539-200012000-00036]

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt, E.P., Loeb, A.L., Longnecker, D.E., 1992. Endothelium-dependent circulatory control-a mechanism for the differing peripheral vascular effects of isoflurane versus halothane. Anesthesiology, 77(6): 1178–1185. [doi:10.1097/00000542-199212000-00020]

    Article  PubMed  CAS  Google Scholar 

  • Guilhaumou, R., Boulamery, A., Deluca, B., Deturmeny, E., Bruguerolle, B., 2010. Effects of induced hyperthermia on pharmacokinetics of ropivacaine in rats. Fundam. Clin. Pharmacol., 24(4):463–468. [doi:10.1111/j.1472-8206.2009.00803.x]

    Article  PubMed  CAS  Google Scholar 

  • Guinet, P., Estebe, J.P., Ratajczak-Enselme, M., Bansard, J.Y., Chevanne, F., Bec, D., Lecorre, P., Wodey, E., Ecoffey, C., 2009. Electrocardiographic and hemodynamic effects of intravenous infusion of bupivacaine, ropivacaine, levobupivacaine, and lidocaine in anesthetized ewes. Reg. Anesth. Pain Med., 34(1):17–23. [doi:10.1097/AAP.0b013e31819338e2]

    Article  PubMed  CAS  Google Scholar 

  • Igarashi, A., Zadzilka, N., Shirahata, M., 2009. Benzodiazepines and GABA-GABAA receptor system in the cat carotid body. Adv. Exp. Med. Biol., 648(1):169–175. [doi:10.1007/978-90-481-2259-2_19]

    Article  PubMed  CAS  Google Scholar 

  • Isaeva, E.V., 2008. Effects of isoflurane on hippocampal seizures at immature rats in vivo. Fiziol. Zh., 54(5):40–45.

    PubMed  CAS  Google Scholar 

  • Kanaya, N., Nakayama, M., Kobayashi, I., Fujita, S., Namiki, A., 1998. Effect of isoflurane on epinephrine-induced arrhythmias in ischemic-reperfused dog hearts. Res. Commun. Mol. Pathol. Pharmacol., 100(2):181–186.

    PubMed  CAS  Google Scholar 

  • Kimura, Y., Kamada, Y., Kimura, A., Orimo, K., 2007. Ropivacaine-induced toxicity with overdose suspected after axillary brachial plexus block. J. Anesth., 21(3): 413–416. [doi:10.1007/s00540-007-0518-x]

    Article  PubMed  Google Scholar 

  • Kuthiala, G., Chaudhary, G., 2011. Ropivacaine: a review of its pharmacology and clinical use. Indian J. Anaesth., 55(2):104–110. [doi:10.4103/0019-5049.79875]

    Article  PubMed  Google Scholar 

  • Ladd, L.A., Chang, D.H., Wilson, K.A., Copeland, S.E., Plummer, J.L., Mather, L.E., 2002. Effects of CNS site-directed carotid arterial infusions of bupivacaine, levobupivacaine, and ropivacaine in sheep. Anesthesiology, 97(2):418–428. [doi:10.1097/00000542-200208000-00020]

    Article  PubMed  CAS  Google Scholar 

  • Lin, P.L., Fan, S.Z., Tsai, F.F., Tsai, M.C., Lin, C.H., Huang, C.H., 2007. Neurotoxicity of a novel local anesthetic agent, ropivacaine: the possible roles of bursts of potential and cytoplasmic second messenger. J. Formos. Med. Assoc., 106(10):815–825. [doi:10.1016/S0929-6646(08)60046-7]

    Article  PubMed  CAS  Google Scholar 

  • Mather, L.E., 2010. The acute toxicity of local anesthetics. Expert Opin. Drug Metab. Toxicol., 6(11):1313–1332. [doi:10.1517/17425255.2010.514265]

    Article  PubMed  CAS  Google Scholar 

  • Moore, D.C., 2009. Overextension of regional blocks: when is enough, enough? Reg. Anesth. Pain Med., 34(1):77–78. [doi:10.1097/AAP.0b013e318193406b]

    Article  PubMed  Google Scholar 

  • Nishiyama, T., Tamai, H., Hanaoka, K., 2003. Serum and cerebrospinal fluid concentrations of midazolam after epidural administration in dogs. Anesth. Analg., 96(1): 159–162. [doi:10.1213/00000539-200301000-00032]

    PubMed  CAS  Google Scholar 

  • Novellas, R., Ruiz de Gopegui, R., Espada, Y., 2007. Effects of sedation with midazolam and butorphanol on resistive and pulsatility indices in healthy dogs. Vet. Radiol. Ultrasound, 48(3):276–280. [doi:10.1111/j.1740-8261.2007.00242.x]

    Article  PubMed  Google Scholar 

  • Rodolà, F., Anastasi, F., Vergari, A., 2007. Ropivacaine induced acute neurotoxicity after epidural injection. Eur. Rev. Med. Pharmacol. Sci., 11(2):133–135.

    PubMed  Google Scholar 

  • Shen, X., Wang, F., Xu, S., Qian, Y., Liu, Y., Yuan, H., Zhao, Q., Feng, S., Guo, X., Xu, J., Yang, J., 2010. Is cardiolipin the target of local anesthetic cardiotoxicity? Rev. Bras. Anestesiol., 60(4):445–454.

    Article  PubMed  CAS  Google Scholar 

  • Stehr, S.N., Christ, T., Rasche, B., Rasche, S., Wettwer, E., Deussen, A., Ravens, U., Koch, T., Hübler, M., 2007. The effects of levosimendan on myocardial function in ropivacaine toxicity in isolated guinea pig heart preparations. Anesth. Analg., 105(3):641–647. [doi:10.1213/01.ane.0000278146.15671.03]

    Article  PubMed  CAS  Google Scholar 

  • Stewart, J., Kellett, N., Castro, D., 2003. The central nervous system and cardiovascular effects of levobupivacaine and ropivacaine in healthy volunteers. Anesth. Analg., 97(2): 412–416. [doi:10.1213/01.ANE.0000069506.68137.F2]

    Article  PubMed  CAS  Google Scholar 

  • Tsibiribi, P., Bui-Xuan, C., Bui-Xuan, B., Tabib, A., Descotes, J., Chevalier, P., Gagnieu, M.C., Belkhiria, M., Timour, Q., 2006. The effects of ropivacaine at clinically relevant doses on myocardial ischemia in pigs. J. Anesth., 20(4): 341–343. [doi:10.1007/s00540-006-0429-2]

    Article  PubMed  Google Scholar 

  • Udelsmann, A., Silva, W.A., Moraes, A.C., Dreyer, E., 2009. Hemodynamic effects of ropivacaine and levobupivacaine intravenous injection in swines. Acta Cir. Bras., 24(4):296–302. [doi:10.1590/S0102-86502009000400009]

    Article  PubMed  Google Scholar 

  • Velly, A.B., Simon, N., Bedidjian, S., Bruguerolle, B., 2006. Effects of a seven-day continuous infusion of ropivacaine on circadian rhythms in the rat. Chronobiol. Int., 23(3): 683–693. [doi:10.1080/07420520600650570]

    Article  PubMed  Google Scholar 

  • Wan, Q.X., Bo, Y.L., Li, H.B., Li, W.Z., 2010. Effects of mixture of lidocaine and ropivacaine at different concentrations on the central nervous system and cardiovascular toxicity in rats. Chin. Med. J. (Engl.), 123(1):79–83.

    CAS  Google Scholar 

  • Wiktorowska, A., Owczarek, J., Orszulak-Michalak, D., 1999. The influence of lidocaine and verapamil on haemodynamic parameters after intravenous administration of midazolam in rabbits. Pharmacol. Res., 39(6):421–429. [doi:10.1006/phrs.1998.0464]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-min Zhu.

Additional information

Project (No. 2006K13-G7-4) supported by the Key Sci-Tech Research Project of Shaanxi Province, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Ym., Yuan, Zy., Wu, H. et al. Midazolam in rabbits terminates dysrhythmias caused by intracerebroventricular ropivacaine. J. Zhejiang Univ. Sci. B 12, 668–676 (2011). https://doi.org/10.1631/jzus.B1000337

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1000337

Key words

CLC number

Navigation