Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity

Abstract

Transgenic Brassica compestris L. spp. chinensis plants expressing a choline oxidase (codA) gene from Arthrobacter globiformis were obtained through Agrobacterium tumefaciens-mediated transformation. In the transgenic plants, codA gene expression and its product transportation to chloroplasts were detected by the enzyme-linked immunosorbent assay (ELISA) examination, immunogold localization, and 1H-nuclear magnetic resonance (1H-NMR). Stress tolerance was evaluated in the T3 plants under extreme temperature and salinity conditions. The plants of transgenic line 1 (L1) showed significantly higher net photosynthetic rate (P n) and P n recovery rate under high (45 °C, 4 h) and low temperature (1 °C, 48 h) treatments, and higher photosynthetic rate under high salinity conditions (100, 200, and 300 mmol/L NaCl, respectively) than the wild-type plants. The enhanced tolerance to high temperature and high salinity stresses in transgenic plants is associated with the accumulation of betaine, which is not found in the wild-type plants. Our results indicate that the introduction of codA gene from Arthrobacter globiformis into Brassica compestris L. spp. chinensis could be a potential strategy for improving the plant tolerance to multiple stresses.

This is a preview of subscription content, access via your institution.

References

  1. Alia, Hayashi, H., Sakamoto, A., Murata, N., 1998a. Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J., 16(2):155–161. [doi:10.1046/j.1365-313x.1998.00284.x]

    CAS  Article  PubMed  Google Scholar 

  2. Alia, Hayashi, H., Chen, T.H.H., Murata, N., 1998b. Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Environ., 21(2):232–239. [doi:10.1046/j.1365-3040.1998.00264.x]

    CAS  Article  Google Scholar 

  3. Alia, Kondo, Y., Sakamoto, A., Nonaka, H., Hayashi, H., Saradhi, P.P., Chen, T.H.H., Murata, N., 1999. Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Mol. Biol., 40(2):279–288. [doi:10.1023/A:1006121821883]

    CAS  Article  PubMed  Google Scholar 

  4. Blumwald, E., Grover, A., 2006. Salt Tolerance. In: Halford, N. (Ed.), Plant Biotechnology, Current and Future Applications of Genetically Modified Crops. John Wiley & Sons, Ltd., Chichester, UK, p.206–224. [doi:10.1002/0470021837.ch11]

    Google Scholar 

  5. Bohnert, H.J., Jensen, R.G., 1996. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol., 14(3): 89–97. [doi:10.1016/0167-7799(96)80929-2]

    CAS  Article  Google Scholar 

  6. Bohnert, H.J., Nelson, D.E., Jensen, R.G., 1995. Adaptations to environmental stresses. Plant Cell, 7(7):1099–1111. [doi:10.1105/tpc.7.7.1099]

    CAS  Article  PubMed  Google Scholar 

  7. Chen, H.H.T., Murata, N., 2008. Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci., 13(9):499–505. [doi:10.1016/j.tplants.2008.06.007]

    CAS  Article  PubMed  Google Scholar 

  8. Cushman, J.C., Meyer, G., Michalowski, C.B., Schmitt, J.M., Bohnert, H.J., 1989. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. The Plant Cell, 1(7):715–725. [doi:10.1105/tpc.1.7.715]

    CAS  Article  PubMed  Google Scholar 

  9. Gorham, J., 1995. Betaines in Higher Plants-Biosynthesis and Role in Stress Metabolism. In: Wallsgrove, R.M. (Ed.), Amino Acids and Their Derivatives in Higher Plants. Cambridge University Press, Cambridge, p.171–203.

    Google Scholar 

  10. Hayashi, H., Alia, Mustardy, L., Deshnium, P., Ida, M., Murata, N., 1997. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J., 12(1):133–142. [doi:10.1046/j.1365-313X.1997.12010133.x]

    CAS  Article  PubMed  Google Scholar 

  11. Hayashi, H., Alia, Sakamoto, A., Nonaka, H., Chen, T.H.H., Murata, N., 1998. Enhanced germination under high-salt conditions of seeds of transgenic Arabidopsis with a bacterial gene (codA) for choline oxidase. J. Plant Res., 111(2):357–362. [doi:10.1007/BF02512197]

    CAS  Article  Google Scholar 

  12. He, P.M., Zhang, D.B., Liang, W.Q., Yao, Q.H., Zhang, R.X., 2001. Expression of choline oxidase (codA) enhances salt tolerance of the tobacco. Acta Biochem. Biophys. Sin., 33(5):519–524 (in Chinese).

    CAS  Google Scholar 

  13. Holmström, K.O., Somersalo, S., Mandal, A., Palva, T.E., Welin, B., 2000. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J. Exp. Bot., 51(343):177–185. [doi:10.1093/jexbot/51.343.177]

    Article  PubMed  Google Scholar 

  14. Huang, J., Hirji, R., Adam, L., Rozwadowski, K.L., Hammerlindl, J.K., Keller, W.A., Selvaraj, G., 2000. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol., 122(3):747–756. [doi:10.1104/pp.122.3.747]

    CAS  Article  PubMed  Google Scholar 

  15. Kramer, H.J., Schmidt, R., Günthe, R.A., Becker, G., Suzuki, Y., Seeger, W., 1995. ELISA technique for quantification of surfactant protein B (SP-B) in bronchoalveolar lavage fluid. Am. J. Respir. Crit. Care Med., 152(5):1540–1544.

    CAS  PubMed  Google Scholar 

  16. Mäkelä, P., Munns, R., Colmer, T.D., Condon, A.G., Peltonen-Sainio, P., 1998. Effect of foliar applications of glycinebetaine on stomatal conductance, abscisic acid and solute concentrations in leaves of salt- or drought-stressed tomato. Aust. J. Plant Physiol., 25(6):655–663. [doi:10.1071/PP98024]

    Article  Google Scholar 

  17. Mohanty, A., Kathuria, H., Ferjani, A., Sakamoto, A., Mohanty, P., Murata, N., Tyagi, A.K., 2002. Transgenics of an elite indica rice variety Pusa Basmati 1 harboring the codA gene are highly tolerant to salt stress. Theor. Appl. Genet., 106(1):51–57.

    CAS  PubMed  Google Scholar 

  18. Mustardy, L., Cunningham, F.X.Jr., Gantt, E., 1990. Localization and quantitation of chloroplast enzymes and light-harvesting components using immunocytochemical methods. Plant Physiol., 94(1):334–340. [doi:10.1104/pp.94.1.334]

    CAS  Article  PubMed  Google Scholar 

  19. Park, E.J., Jeknic, Z., Pino, M.T., Murata, N., Chen, T.H.H., 2007. Glycinebetaine accumulation in chloroplasts is more effective than that in cytosol in protecting transgenic tomato plants against abiotic stress. Plant Cell Environ., 30(8):994–1005. [doi:10.1111/j.1365-3040.2007.01694.x]

    CAS  Article  PubMed  Google Scholar 

  20. Parvanova, D., Ivanov, S., Konstantinova, T., Karanov, E., Atanassov, A., Tsvetkov, T., Alexieva, V., Djilianov, D., 2004. Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol. Biochem., 42(1):57–63. [doi:10.1016/j.plaphy.2003.10.007]

    CAS  Article  PubMed  Google Scholar 

  21. Prasad, K.V.S.K., Saradhi, P.P., 2004. Enhanced tolerance to photoinhibition in transgenic plants through targeting of glycinebetaine biosynthesis into the chloroplasts. Plant Sci., 166(5):1197–1212. [doi:10.1016/j.plantsci.2003.12.031]

    CAS  Article  Google Scholar 

  22. Prasad, K.V.S.K., Sharmila, P., Kumar, P.A., Saradhi, P.P., 2000. Transformation of Brassica juncea (L) Czern with bacterial codA gene enhances its tolerance to salt stress. Mol. Breed., 6(5):489–499. [doi:10.1023/A:1026542109965]

    CAS  Article  Google Scholar 

  23. Rahman, M.S., Miyake, H., Takeoka, Y., 2002. Effects of exogenous glycinebetaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.). Plant Prod. Sci., 5(1):33–44. [doi:10.1626/pps.5.33]

    CAS  Article  Google Scholar 

  24. Rontein, D., Basset, G., Hanson, A.D., 2002. Metabolic engineering of osmoprotectant accumulation in plants. Met. Eng., 4(1):49–56. [doi:10.1006/mben.2001.0208]

    CAS  Article  Google Scholar 

  25. Sakamoto, A., Murata, N., 2000. Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J. Exp. Bot., 51(342):81–88. [doi:10.1093/jexbot/51.342.81]

    CAS  Article  PubMed  Google Scholar 

  26. Sakamoto, A., Murata, N., 2001. The use of bacterial choline oxidase, a glycinebetaine synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol., 125(1): 180–188. [doi:10.1104/pp.125.1.180]

    CAS  Article  PubMed  Google Scholar 

  27. Sakamoto, A., Murata, N., 2002. The role of glycinebetaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ., 25(2):163–171. [doi:10.1046/j.0016-8025.2001.00790.x]

    CAS  Article  PubMed  Google Scholar 

  28. Sakamoto, A., Alia, Murata, N., 1998. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol. Biol., 38(6):1011–1019. [doi:10.1023/A:1006095015717]

    CAS  Article  PubMed  Google Scholar 

  29. Saneoka, H., Nagasaka, C., Hahn, D.T., Yang, W.J., Premachandra, G.S., Joly, R.J., Rhodes, D., 1995. Salt tolerance of glycinebetaine deficient and containing maize lines. Plant Physiol., 107(2):631–638.

    CAS  PubMed  Google Scholar 

  30. Sawahel, W., 2003. Improved performance of transgenic glycinebetaine-accumulating rice plants under drought stress. Biologia Plantarum, 47(1):39–44. [doi:10.1023/A:1027372629612]

    CAS  Article  Google Scholar 

  31. Schobert, B., 1977. Is there an osmotic regulatory mechanism in algae and higher plants? J. Theor. Biol., 68(1):17–26. [doi:10.1016/0022-5193(77)90224-7]

    CAS  Article  PubMed  Google Scholar 

  32. Xu, W., Sun, M.H., Zhu, Y.F., Su, W.A., 2001. Protective effects of glycibetaine on Brassica chinensis under salt stress. Acta Bot. Sin., 43(8):809–814.

    CAS  Google Scholar 

  33. Yang, S.Y., 1999. Determination of Chlorophyll Content. In: Tang, Z.C. (Ed.), Modern Experiment Protocol in Plant Physiology. Science Press, Beijing, China, p.95–96 (in Chinese).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qing-zhong Xue or Wei-ai Su.

Additional information

Project supported by the National Science Foundation of China (No. 30571146) and the National Key Basic Research Special Foundation of China (No. G1999011700)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Qb., Xu, W., Xue, Qz. et al. Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity. J. Zhejiang Univ. Sci. B 11, 851–861 (2010). https://doi.org/10.1631/jzus.B1000137

Download citation

Key words

  • Brassica compestris L. spp. chinensis
  • codA
  • Stress
  • Glycine betaine
  • Net photosynthetic rate (P n)

CLC number

  • Q943.2