Skip to main content
Log in

Magnetic cell sorting and flow cytometry sorting methods for the isolation and function analysis of mouse CD4+ CD25+ Treg cells

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Objective

In this paper we compared the two methods of cell sorting (magnetic cell sorting and flow cytometry sorting) for the isolation and function analysis of mouse CD4+ CD25+ regulatory T (Treg) cells, in order to inform further studies in Treg cell function.

Methods

We separately used magnetic cell sorting and flow cytometry sorting to identify CD4+ CD25+ Treg cells. After magnetic cell separation, we further used flow cytometry to analyze the purity of CD4+ CD25+ Treg cells, trypan blue staining to detect cell viability, and propidium iodide (PI) staining to assess the cell viability. We detected the immune inhibition of CD4+ CD25+ Treg cells in the in vitro proliferation experiments.

Results

The results showed that compared to flow cytometry sorting, magnetic cell sorting took more time and effort, but fewer live cells were obtained than with flow cytometry sorting. The CD4+ CD25+ Treg cells, however, obtained with both methods have similar immunosuppressive capacities.

Conclusion

The result suggests that both methods can be used in isolating CD4+ CD25+ Treg cells, and one can select the best method according to specific needs and availability of the methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Campbell, D.J., Ziegler, S.F., 2007. FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nature Reviews Immunology, 7(4):305–310. [doi:10.1038/nri2061]

    Article  CAS  PubMed  Google Scholar 

  • Carrigan, S.O., Yang, Y.J., Issekutz, T., Forward, N., Hoskin, D., Johnston, B., Lin, T.J., 2009. Depletion of natural CD4(+)CD25(+) T regulatory cells with anti-CD25 antibody does not change the course of Pseudomonas aeruginosa-induced acute lung infection in mice. Immunobiology, 214(3):211–222. [doi:10.1016/j.imbio.2008.07.027]

    Article  CAS  PubMed  Google Scholar 

  • Golshayan, D., Jiang, S.P., Tsang, J., Garin, M.I., Mottet, C., Lechler, R.I., 2007. In vitro-expanded donor alloantigen-specific CD4(+)CD25(+) regulatory T cells promote experimental transplantation tolerance. Blood, 109(2): 827–835. [doi:10.1182/blood-2006-05-025460]

    Article  CAS  PubMed  Google Scholar 

  • Loser, K., Mehling, A., Loeser, S., Apelt, J., Kuhn, A., Grabbe, S., Schwarz, T., Penninger, J.M., Beissert, S., 2006. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nature Medicine, 12(12): 1372–1379. [doi:10.1038/nm1518]

    Article  CAS  PubMed  Google Scholar 

  • Lu, Y.Q., Huang, W.D., Cai, X.J., Gu, L.H., Mou, H.Z., 2008. Hypertonic saline resuscitation reduces apoptosis of intestinal mucosa in a rat model of hemorrhagic shock. Journal of Zhejiang University-SCIENCE B, 9(11):879–884. [doi:10.1631/jzus.B0820116]

    Article  PubMed  Google Scholar 

  • Milner, J.D., Ward, J.M., Keane-Myers, A., Paul, W.E., 2007. Lymphopenic mice reconstituted with limited repertoire T cells develop severe, multiorgan, Th2-associated inflammatory disease. Proceedings of the National Academy of Sciences of the United States of America, 104(2): 576–581. [doi:10.1073/pnas.0610289104]

    Article  CAS  PubMed  Google Scholar 

  • Ono, M., Yaguchi, H., Ohkura, N., Kitabayashi, I., Nagamura, Y., Nomura, T., Miyachi, Y., Tsukada, T., Sakaguchi, S., 2007. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature, 446(7136):685–689. [doi:10.1038/nature05673]

    Article  CAS  PubMed  Google Scholar 

  • Steger, U., Kingsley, C.L., Karim, M., Wood, K.J., 2006. CD25(+)CD4(+) regulatory T cells develop in mice not only during spontaneous acceptance of liver allografts but also after acute allograft rejection. Transplantation, 82(9): 1202–1209. [doi:10.1097/01.tp.0000235913.58337.b4]

    Article  PubMed  Google Scholar 

  • Wang, H.J., Zhao, L., Sun, Z.Y., Sun, L.G., Zhang, B.J., Zhao, Y., 2006. A potential side effect of cyclosporin A: inhibition of CD4(+)CD25(+) regulatory T cells in mice. Transplantation, 82(11):1484–1492. [doi:10.1097/01.tp.0000246312.89689.17]

    Article  CAS  PubMed  Google Scholar 

  • Xia, G.L., Shah, M., Luo, X.R., 2009. Prevention of allograft rejection by amplification of Foxp3+CD4+CD25+ regulatory T cells. Translational Research, 153(2):60–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pu-xun Tian.

Additional information

The two authors contributed equally to this work

Project supported by the National Natural Science Foundation of China (Nos. 30872578 and 30753761), the Natural Science Foundation of Shanxi Province (No. SJ08C201), the Science and Technology Key Projects Foundation of Shanxi Province (No. 2008K13-04), and the Science and Technology Plan Projects Foundation of Xi’an (No. SF08006-2), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, H., Ding, Cg., Tian, Px. et al. Magnetic cell sorting and flow cytometry sorting methods for the isolation and function analysis of mouse CD4+ CD25+ Treg cells. J. Zhejiang Univ. Sci. B 10, 928–932 (2009). https://doi.org/10.1631/jzus.B0920205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0920205

Key words

CLC number

Navigation