Skip to main content
Log in

Genetic mapping of quantitative trait loci associated with β-amylase and limit dextrinase activities and β-glucan and protein fraction contents in barley

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

High malting quality of barley (Hordeum vulgare L.) relies on many traits, such as β-amylase and limit dextrinase activities and β-glucan and protein fraction contents. In this study, interval mapping was utilized to detect quantitative trait loci (QTLs) affecting these malting quality parameters using a doubled haploid (DH) population from a cross of CM72 (six-rowed) by Gairdner (two-rowed) barley cultivars. A total of nine QTLs for eight traits were mapped to chromosomes 3H, 4H, 5H, and 7H. Five of the nine QTLs mapped to chromosome 3H, indicating a possible role of loci on chromosome 3H on malting quality. The phenotypic variation accounted by individual QTL ranged from 8.08% to 30.25%. The loci of QTLs for β-glucan and limit dextrinase were identified on chromosomes 4H and 5H, respectively. QTL for hordeins was coincident with the region of silica eluate (SE) protein on 3HS, while QTLs for albumins, globulins, and total protein exhibited overlapping. One locus on chromosome 3H was found to be related to β-amylase, and two loci on chromosomes 5H and 7H were found to be associated with glutelins. The identification of these novel QTLs controlling malting quality may be useful for marker-assisted selection in improving barley malting quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arends, A.M., Fox, G.P., Henry, R.J., Marschke, R.J., Symons, M.H., 1995. Genetic and environmental variation in the diastatic power of Australian barley. J. Cereal Sci., 21(1): 63–70. [doi:10.1016/S0733-5210(95)80009-3]

    Article  CAS  Google Scholar 

  • Bamforth, C.W., 1982. Barley β-glucans: their role in malting and brewing. Brew. Dig., 57(6):22–27.

    CAS  Google Scholar 

  • Baxter, E.D., 1981. Hordein in barley and malt. A review. J. Inst. Brew., 87(2):173–176.

    CAS  Google Scholar 

  • Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72(1–2):248–254. [doi:10.1016/0003-2697(76)90527-3]

    Article  PubMed  CAS  Google Scholar 

  • Celus, I., Brijs, K., Delcour, J.A., 2006. The effects of malting and mashing on barley protein extractability. J. Cereal Sci., 44(2):203–211. [doi:10.1016/j.jcs.2006.06.003]

    Article  CAS  Google Scholar 

  • Clancy, J.A., Han, F., Ullrich, S.E., 2003. Comparative mapping of beta-amylase activity loci among three barley crosses. Crop Sci., 43(3):1043–1052.

    CAS  Google Scholar 

  • Delcour, J.A., Verschaeve, S.G., 1987. Malt diastatic power. Part II. A modified EBC diastatic power assay for the selective estimation of β-amylase activity. Time and temperature dependence of the release of reducing sugars. J. Inst. Brew., 93(4):296–301.

    CAS  Google Scholar 

  • Dellaporta, S.L., Wood, J., Hicks, J.B., 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep., 1(4): 19–21. [doi:10.1007/BF02712670]

    Article  CAS  Google Scholar 

  • Emebiri, L.C., Moody, D.B., Horsley, R., Panozzo, J.F., Read, B.J., 2005. The genetic control of grain protein content variation in a doubled haploid population derived from a cross between Australian and North American two-rowed barley lines. J. Cereal Sci., 41(1):107–114. [doi:10.1016/j.jcs.2004.08.012]

    Article  CAS  Google Scholar 

  • Georg-kraemer, J.E., Mundstock, E.C., Cavalli-Molina, L., 2001. Developmental expression of amylase during barley malting. J. Cereal Sci., 33(3):279–288. [doi:10.1006/jcrs.2001.0367]

    Article  CAS  Google Scholar 

  • Han, F., Ullrich, S.E., Chirat, S., Menteur, S., Jestin, L., Sarrafi, A., Hayes, P.M., Jones, B.L., Blake, T.K., Wesenberg, D.M., et al., 1995. Mapping of β-glucan content and β-glucanase activity loci in barley grain and malt. Theor. Appl. Genet., 91(6–7):921–927. [doi:10.1007/BF00223901]

    CAS  Google Scholar 

  • Hayes, P.M., Jones, B.L., 2000. Malting Quality from a QTL Perspective. In: Logue, S. (Ed.), Proceedings of the Eighth International Barley Genet. Symp., p.99–106.

  • Hayes, P.M., Cerono, J., Witsenboer, H., Kuiper, M., Zabeau, M., Sato, K., Kleinhofs, A., Kudrna, D., Killian, A., Saghai-Maroof, M., Hoffman, D., the North American Barley Genome Mapping Project, 1997. Characterizing and exploiting genetic diversity and quantitative traits in barley (Hordeum vulgare) using AFLP markers. J. Quant. Trait Loci, 3(1):1–15.

    Google Scholar 

  • Hayes, P.M., Castro, A., Marquez-Cedillo, L., Corey, A., Henson, C., Jones, B., Kling, J., Mather, D., Matus, I., Rossi, C., Sato, K., 2001. A Summary of Published Barley QTL Reports. Available from: http://www.barleyworld.org/northamericanbarley/qtlsummary.php (access at Mar. 28, 2005).

  • Holme, D.J., Peck, H., 1998. Analytical Biochemistry, 3rd Ed. Addison Wesley Longman, New York, p.388–393.

    Google Scholar 

  • Langridge, P., Karakousis, A., Kretschmer, J., Manning, S., Logue, S., 1996. Barley Mapping and QTL Analysis of Three Populations from the University of Adelaide. Available on line through GrainGenes. Available from: http://wheat.pw.usda.gov/ggpages/maps.html (access at Dec. 19, 2002).

  • Li, C.D., Zhang, X.Q., Eckstein, P., Rossnagel, B.G., Scoles, G.H., 1999. A polymorphic microsatellite in the limit dextrinase gene of barley (Hordeum vulgare L.). Mol. Breeding, 5(6):569–577. [doi:10.1023/A:1009692207966]

    Article  CAS  Google Scholar 

  • Li, J.Z., Huang, X.Q., Heinrichs, F., Ganal, M.W., Röder, M.S., 2005. Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley. Theor. Appl. Genet., 110(2):356–363. [doi:10.1007/s00122-004-1847-x]

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z.H., Cheng, F.M., Cheng, W.D., Zhang, G.P., 2005. Positional variations in phytic acid and protein content within a panicle of japonica rice. J. Cereal Sci., 41(3): 297–303. [doi:10.1016/j.jcs.2004.09.010]

    Article  CAS  Google Scholar 

  • Manly, K.F., Cudmore, R.H., Meer, J.M., 2001. Map manager QTX, cross-platform software for genetic mapping. Mamm. Genome, 12(12):930–932. [doi:10.1007/s00335-001-1016-3]

    Article  PubMed  CAS  Google Scholar 

  • Mather, D.E., Tinker, N.A., LaBerge, D.E., Edney, M., Jones, B.L., Rossnagel, B.G., Legge, W.G., Briggs, K.G., Irvine, R.B., Falk, D.E., et al., 1997. Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Sci., 37(2):544–554.

    CAS  Google Scholar 

  • McCleary, B.V., 1992. Measurement of the content of limit dextrinase in cereal flours. Carbohydr. Res., 227(1): 257–268. [doi:10.1016/0008-6215(92)85076-C]

    Article  CAS  Google Scholar 

  • McCleary, B.V., Codd, R., 1989. Measurement of beta-amylase in cereal flours and commercial enzyme preparations. J. Cereal Sci., 9(1):17–33. [doi:10.1016/S0733-5210(89)80018-9]

    Article  CAS  Google Scholar 

  • McCleary, B.V., Codd, R., 1991. Measurement of (1-3),(1-4)-β-D-glucan in barley and oats: a streamlined enzymic procedure. J. Sci. Food Agric., 55(2):303–312. [doi:10.1002/jsfa.2740550215]

    Article  CAS  Google Scholar 

  • McCouch, S.R., Cho, Y.G., Yano, M., Paul, E., Blinstrub, M., 1997. Report on QTL nomenclature. Rice Genet. Newslett., 14:11–13.

    Google Scholar 

  • Oziel, A., Hayes, P.M., Chen, F.Q., Jones, B., 1996. Application of quantitative trait locus mapping to the development of winter-habit malting barley. Plant Breeding, 115(1):43–51. [doi:10.1111/j.1439-0523.1996.tb00869.x]

    Article  CAS  Google Scholar 

  • Panozzo, J.F., Eckermann, P.J., Mather, D.E., Moody, D.B., Black, C.K., Collins, H.M., Barr, A.R., Lim, P., Cullis, B.R., 2007. QTL analysis of malting quality traits in two barley populations. Aust. J. Agric. Res., 58(9):858–866. [doi:10.1071/AR06203]

    Article  CAS  Google Scholar 

  • Rasmusson, D.C., Glass, R.L., 1965. Effectiveness of early generation selection for four quality characters in barley. Crop Sci., 5(2):389–391.

    Article  Google Scholar 

  • Robinson, L.H., Healy, P., Stewart, D.C., Eglinton, J.K., Ford, C.M., Evans, D.E., 2007. The identification of a barley haze active protein that influences beer haze stability: the genetic basis of a barley malt haze active protein. J. Cereal Sci., 45(3):335–342. [doi:10.1016/j.jcs.2006.08.013]

    Article  CAS  Google Scholar 

  • Shewry, P.R., 1993. Barley Seed Proteins. In: MacGregor, A.W., Bhatty, R.S. (Eds.), Barley: Chemistry and Technology. American Society of Cereal Chemists, Minnesota, USA, p.131–197.

    Google Scholar 

  • von Korff, M., Wang, H.J., Léon, J., Pillen, K., 2008. AB-QTL analysis in spring barley: III. Identification of exotic alleles for the improvement of malting quality in spring barley (H. vulgare ssp. spontaneum). Mol. Breeding, 21(1):81–93.

    Article  CAS  Google Scholar 

  • Wang, D.L., Zhu, J., Li, Z.K., Paterson, A.H., 1999. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theor. Appl. Genet., 99(7–8):1255–1264. [doi:10.1007/s001220051331]

    Article  Google Scholar 

  • Wang, J.M., Zhang, G.P., Chen, J.X., Wu, F.B., 2004. The changes of β-glucan content and β-glucanase activity in barley before and after malting and their relationships to malt qualities. Food Chem., 86(2):223–228. [doi:10.1016/j.foodchem.2003.08.020]

    Article  CAS  Google Scholar 

  • Wang, X.D., Yang, J., Zhang, G.P., 2006. Genotypic and environmental variation in barley limit dextrinase activity and its relation to malt quality. J. Zhejiang Univ. Sci. B., 7(5):386–392. [doi:10.1631/jzus.2006.B0386]

    Article  PubMed  CAS  Google Scholar 

  • Yang, J., Hu, C.C., Ye, X.Z., Zhu, J., 2005. QTLNetwork 2.0. Institute of Bioinformatics, Zhejiang University, Hangzhou, China. Available from: http://ibi.zju.edu.cn/software/qtlnetwork

    Google Scholar 

  • Yin, C., Zhang, G.P., Wang, J.M., Chen, J.X., 2002. Variation of β-amylase activity in barley as affected by cultivar and environment and its relation to protein content and grain weight. J. Cereal Sci., 36(3):307–312. [doi:10.1006/jcrs.2002.0467]

    Article  CAS  Google Scholar 

  • Zale, J.M., Clancy, J.A., Ullrich, S.E., Jones, B.L., Hayes, P.M., 2000. North American barley genome project. Summary of barley malting-quality QTLs mapped in various populations. Barley Genet. Newslett., 30:44–54.

    Google Scholar 

  • Zhang, G.P., Chen, J.X., Dai, F., Wang, J.M., Wu, F.B., 2006. The effect of cultivar and environment on beta-amylase activity is associated with the change of protein content in barley grains. J. Agron. Crop Sci., 192(1):43–49. [doi:10.1111/j.1439-037X.2006.00181.x]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-ping Zhang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 30630047 and 30771281), the Hi-Tech Research and Development Program (863) of China (No. 2006AA10Z1C3), and the Ministry of Education and the State Administration of Foreign Experts Affairs (111 Project) of China (No. B06014)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, K., Xue, Dw., Huang, Yz. et al. Genetic mapping of quantitative trait loci associated with β-amylase and limit dextrinase activities and β-glucan and protein fraction contents in barley. J. Zhejiang Univ. Sci. B 10, 839–846 (2009). https://doi.org/10.1631/jzus.B0920135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0920135

Key words

CLC number

Navigation