Skip to main content
Log in

Biotreatment of oily wastewater by rhamnolipids in aerated active sludge system

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Oily wastewater generated by various industries creates a major ecological problem throughout the world. The traditional methods for the oily wastewater treatment are inefficient and costly. Surfactants can promote the biodegradation of petroleum hydrocarbons by dispersing oil into aqueous environment. In the present study, we applied rhamnolipid-containing cell-free culture broth to enhance the biodegradation of crude oil and lubricating oil in a conventional aerobically-activated sludge system. At 20 °C, rhamnolipids (11.2 mg/L) increased the removal efficiency of crude oil from 17.7% (in the absence of rhamnolipids) to 63%. At 25 °C, the removal efficiency of crude oil was over 80% with the presence of rhamnolipids compared with 22.3% in the absence of rhamnolipids. Similarly, rhamnolipid treatment (22.5 mg/L) for 24 h at 20 °C significantly increased the removal rate of lubricating oil to 92% compared with 24% in the absence of rhamnolipids. The enhanced removal of hydrocarbons was mainly attributed to the improved solubility and the reduced interfacial tension by rhamnolipids. We conclude that a direct application of the crude rhamnolipid solution from cell culture is effective and economic in removing oily contaminants from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abalos, A., Viñas, M., Sabaté, J., Manresa, M.A., Solanas, A.M., 2004. Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation, 15(4):249–260. [doi:10.1023/B:BIOD.0000042915.28757.fb]

    Article  CAS  PubMed  Google Scholar 

  • Abouseoud, M., Maachi, R., Amrane, A., Boudergua, S., Nabi, A., 2008. Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination, 223(1–3):143–151. [doi:10.1016/j.desal.2007.01.198]

    Article  CAS  Google Scholar 

  • Allard, A.S., Neilson, A.H., 1997. Bioremediation of organic waste sites: a critical review of microbiological aspects. Int. Biodeter. Biodegrad., 39(4):253–285. [doi:10.1016/S0964-8305(97)00021-8]

    Article  CAS  Google Scholar 

  • Al-Shamrani, A.A., James, A., Xiao, H., 2002a. Destabilisation of oil-water emulsions and separation by dissolved air flotation. Water Res., 36(6):1503–1512. [doi:10.1016/S0043-1354(01)00347-5]

    Article  CAS  PubMed  Google Scholar 

  • Al-Shamrani, A.A., James, A., Xiao, H., 2002b. Separation of oil from water by dissolved air flotation. Colloid. Surf. A, 209(1):15–26. [doi:10.1016/S0927-7757(02)00208-X]

    Article  CAS  Google Scholar 

  • ASTM D971-99a, 2004. Standard Test Method for Interfacial Tension of Oil Against Water by the Ring Method. ASTM international, West Conshohocken, Pennsylvania. Available from http://www.astm.org/Standards/D971.htm [doi:10.1520/D0971-99AR04]

    Google Scholar 

  • Bai, G., Brusseau, M., Miller, R., 1997. Biosurfactant-enhanced removal of residual hydrocarbon from soil. J. Contam. Hydrol., 25(1–2):157–170. [doi:10.1016/S0169-7722(96)00034-4]

    Article  CAS  Google Scholar 

  • Carvalho, G., Novais, J.M., Pinheiro, H.M., Vanrolleghem, P.A., 2004. Model development and application for surfactant biodegradation in an acclimatising activated sludge system. Chemosphere, 54(10):1495–1502. [doi:10.1016/j.chemosphere.2003.08.028]

    Article  CAS  PubMed  Google Scholar 

  • Chang, I., Chung, C., Han, S., 2001. Treatment of oily wastewater by ultrafiltration and ozone. Desalination, 133(3):225–232. [doi:10.1016/S0011-9164(01)00103-5]

    Article  CAS  Google Scholar 

  • Clifford, J., Ioannidis, M., Legge, R., 2007. Enhanced aqueous solubilization of tetrachloroethylene by a rhamnolipid biosurfactant. J. Colloid Interf. Sci., 305(2):361–365. [doi:10.1016/j.jcis.2006.10.026]

    Article  CAS  Google Scholar 

  • Costa, S.G.V.A.O., Nitschke, M., Haddad, R., Eberlin, M.N., Contiero, J., 2006. Production of Pseudomonas aeruginosa LBI rhamnolipids following growth on Brazilian native oils. Process Biochem., 41(2):483–488. [doi:10.1016/j.procbio.2005.07.002]

    Article  CAS  Google Scholar 

  • Lee, M.J., Lee, M.J., Kim, M.K., Kim, M.K., Kwon, M.J., Deog, P.B., Kim, M.H., Michael, G., Lee, S.T., 2005. Effect of the synthesized mycolic acid on the biodegradation of diesel oil by Gordonia nitida strain LE31. J. Biosci. Bioeng., 100(4):429–436. [doi:10.1263/jbb.100.429]

    Article  CAS  PubMed  Google Scholar 

  • Miller, R.M., Bartha, R., 1989. Evidence for liposome encapsulation for transport-limited microbial metabolism ofsolid alkanes. Appl. Environ. Microbiol., 55(2):269–274.

    CAS  PubMed  Google Scholar 

  • Mitsui, T., Nakamura, S., Harusawa, F., Machida, Y., 1971. Changes in the interfacial tension with temperature and their effects on the particle size and stability of emulsions. Colloid Polym. Sci., 250(3):227–230.

    Google Scholar 

  • Mohan, P.K., Nakhla, G., Yanful, E.K., 2006. Biokinetics of biodegradation of surfactants under aerobic, anoxic and anaerobic conditions. Water Res., 40(3):533–540. [doi:10.1016/j.watres.2005.11.030]

    Article  CAS  PubMed  Google Scholar 

  • Noordman, W.H., Wachter, J.H.J., Boer, G.J., Janssen, D.B., 2002. The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. J. Biotechnol., 94(2):195–212. [doi:10.1016/S0168-1656(01)00405-9]

    Article  CAS  PubMed  Google Scholar 

  • Patel, R.H., Desal, A.J., 1997. Surface-active properties of rhamnolipids from Pseudomonas aeruginosa GS3. J. Basic Microbiol., 37(4):281–286. [doi:10.1002/jobm.3620370407]

    Article  CAS  PubMed  Google Scholar 

  • Qing, J.L., Qing, O.Z., Ouyang, Z.Y., 2005. Ecological behavior of linear alkylbenzene sulfonate (LAS) in soilplant systems. Pedosphere, 15(2):216–224.

    Google Scholar 

  • Rosso, D., Larson, L., Stenstrom, M., 2006. Surfactant effects on alpha factors in full-scale wastewater aeration systems. Water Sci. Technol., 54(10):143–153. [doi:10.2166/wst.2006.768]

    Article  CAS  PubMed  Google Scholar 

  • Soda, S., Ike, M., Fujita, M., 1998. Effects of inoculation of a genetically engineered bacterium on performance and indigenous bacteria of a sequencing batch activated sludge process treating phenol. J. Ferment. Bioeng., 86(1): 90–96. [doi:10.1016/S0922-338X(98)80040-8]

    Article  CAS  Google Scholar 

  • Tang, W., Zeng, X., Zhao, J., Gu, G., Li, Y., 2003. The study on the wet air oxidation of highly concentrated emulsified wastewater and its kinetics. Sep. Purif. Technol., 31(1): 77–82. [doi:10.1016/S1383-5866(02)00161-2]

    Article  CAS  Google Scholar 

  • Tellez, G.T., Nirmalakhandan, N., Gardea-Torresdey, J.L., 2002. Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water. Adv. Environ. Res., 6(4):455–470. [doi:10.1016/S1093-0191(01)00073-9]

    Article  CAS  Google Scholar 

  • Uysal, A., Turkman, A., 2005. Effect of biosurfactant on 2,4-dichlorophenol biodegradation in an active sludge bioreactor. Process Biochem., 40(8):2745–2749. [doi:10.1016/j.procbio.2004.12.026]

    Article  CAS  Google Scholar 

  • Yang, L., Lai, C.T., Shieh, W.K., 2000. Biodegradation of dispersed diesel fuel under high salinity conditions. Water Res., 34(13):3303–3314. [doi:10.1016/S0043-1354(00)00 072-5]

    Article  CAS  Google Scholar 

  • Zhang, H., Xiang, H., Zhang, G., Cao, X., Meng, Q., 2009. Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution. J. Hazard. Mater., 167(1–3):217–223. [doi:10.1016/j.jhazmat.2008.12.110]

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Miller, R., 1992. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (Biosurfactant). Appl. Environ. Microbiol., 58(10): 3276–3282.

    CAS  PubMed  Google Scholar 

  • Zhu, Y., Gan, J.J., Zhang, G.L., Yao, B., Zhu, W.J., Meng, Q., 2007. Reuse of waste frying oil for production of rhamnolipids using Pseudomonas aeruginosa zju.u1M. J. Zhejiang Univ. Sci. A, 8(9):1514–1520. [doi:10.1631/jzus.2007.A1514]

    Article  CAS  Google Scholar 

  • Zouboulis, A., Avranas, A., 2000. Treatment of oil-in-water emulsions by coagulation and dissolved-air flotation. Colloid Surf. A, 172(1-3):153–161. [doi:10.1016/S0927-7757(00)00561-6]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Meng.

Additional information

Project (No. 56310503014) supported by the Department of Education of Zhejiang Province, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Hz., Long, Xw., Sha, Ry. et al. Biotreatment of oily wastewater by rhamnolipids in aerated active sludge system. J. Zhejiang Univ. Sci. B 10, 852–859 (2009). https://doi.org/10.1631/jzus.B0920122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0920122

Key words

CLC number

Navigation