Skip to main content
Log in

Hydraulic pressure inducing renal tubular epithelial-myofibroblast transdifferentiation in vitro

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Objective

The effects of hydraulic pressure on renal tubular epithelial-myofibroblast transdifferentiation (TEMT) were investigated.

Methods

We applied hydraulic pressure (50 cmH2O) to normal rat kidney tubular epithelial cells (NRK52E) for different durations. Furthermore, different pressure magnitudes were applied to cells. The morphology, cytoskeleton, and expression of myofibroblastic marker protein and transforming growth factor-β1 (TGF-β1) of NRK52E cells were examined. Results: Disorganized actin filaments and formation of curling clusters in actin were seen in the cytoplasm of pressurized cells. We verified that de novo expression of α-smooth muscle actin induced by pressure, which indicated TEMT, was dependent on both the magnitude and duration of pressure. TGF-β1 expression was significantly upregulated under certain conditions, which implies that the induction of TEMT by hydraulic pressure is related with TGF-β1.

Conclusion

We illustrate for the first time that hydraulic pressure can induce TEMT in a pressure magnitude- and duration-dependent manner, and that this TEMT is accompanied by TGF-β1 secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cheng, M., Wu, J., Liu, X.H., Li, Y., Nie, Y.M., Li, L., Chen, H.Q., 2007. Low shear stress-induced interleukin-8 mRNA expression in endothelial cells is mechanotransduced by integrins and the cytoskeleton. Endothelium, 14(6):265–273. [doi:10.1080/10623320701678169]

    Article  PubMed  CAS  Google Scholar 

  • Cowger, N.L., Benes, E., Allen, P.L., Hammond, T.G., 2002. Expression of renal cell protein markers is dependent on initial mechanical culture conditions. J. Appl. Physiol., 92(2):691–700.

    PubMed  CAS  Google Scholar 

  • Deen, W.M., Maddox, D.A., Robertson, C.R., Brenner, B.M., 1974. Dynamics of glomerular ultrafiltration in the rat. VII: response to reduced renal mass. Am. J. Physiol., 227(3):556–562.

    PubMed  CAS  Google Scholar 

  • Essig, M., Friedlander, G., 2003. Shear-stress-responsive signal transduction mechanisms in renal proximal tubule cells. Curr. Opin. Nephrol. Hypertens., 12(1):31–34. [doi:10.1097/00041552-200301000-00006]

    Article  PubMed  CAS  Google Scholar 

  • Essig, M., Terzi, F., Burtin, M., Friedlander, G., 2001. Mechanical strains induced by tubular flow affect the phenotype of proximal tubular cells. Am. J. Physiol. Renal. Physiol., 281(4):F751–F762.

    PubMed  CAS  Google Scholar 

  • Fan, J.M., Ng, Y.Y., Hill, P.A., Nikolic-Paterson, D.J., Mu, W., Atkins, R.C., Lan, H.Y., 1999. Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int., 56(4):1455–1467. [doi:10.1046/j.1523-1755.1999.00656.x]

    Article  PubMed  CAS  Google Scholar 

  • Gnudi, L., Thomas, S.M., Viberti, G., 2007. Mechanical forces in diabetic kidney disease: a trigger for impaired glucose metabolism. J. Am. Soc. Nephrol., 18(8):2226–2232. [doi:10.1681/ASN.2006121362]

    Article  PubMed  CAS  Google Scholar 

  • Hostetter, T.H., Olson, J.L., Rennke, H.G., Venkatachalam, M.A., 1981. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am. J. Physiol., 241(1):F85–F93.

    PubMed  CAS  Google Scholar 

  • Kaufman, J.M., Siegel, N.J., Hayslett, J.P., 1975. Functional and hemodynamic adaptation to progressive renal ablation. Circ. Res., 36(2):286–293.

    PubMed  CAS  Google Scholar 

  • Klahr, S., Schreiner, G., Ichikawa, I., 1988. The progression of renal disease. New Engl. J. Med., 318:1657–1666.

    Article  PubMed  CAS  Google Scholar 

  • Lehoux, S., Castier, Y., Tedgui, A., 2006. Molecular mechanisms of the vascular responses to haemodynamic forces. J. Intern. Med., 259(4):381–392. [doi:10.1111/j.1365-2796.2006.01624.x]

    Article  PubMed  CAS  Google Scholar 

  • Martin, J.S., Brown, L.S., Haberstroh, K.M., 2005. Microfilament are involved in renal responses to sustained hydrostatic pressure. J. Urol., 173(4):1410–1417. [doi:10.1097/01.ju.0000149031.93643.a5]

    Article  PubMed  Google Scholar 

  • Maruyama, T., Hayashi, Y., Nakane, A., Sasaki, S., Kohri, K., 2005. Intermittent pressure-loading increases transforming growth factor-beta-1 secretion from renal tubular epithelial cells in vitro vesicoureteral reflux model. Urol. Int., 75(2):150–158. [doi:10.1159/000087170]

    Article  PubMed  CAS  Google Scholar 

  • Meguid El Nahas, A., Bello, A.K., 2005. Chronic kidney disease: the global challenge. Lancet, 365(9456):331–340. [doi:10.1016/S0140-6736(05)17789-7]

    PubMed  CAS  Google Scholar 

  • Miyajima, A., Chen, J., Kirman, I., Poppas, D.P., Darracott Vaughan, E., Felsen, D., 2000. Interaction of nitric oxide and transforming growth factor-beta 1 induced by angiotensin II and mechanical stretch in rat renal tubular epithelial cells. J. Urol., 164(5):1729–1734. [doi:10.1016/S0022-5347(05)67097-8]

    Article  PubMed  CAS  Google Scholar 

  • Mori, T., Cowley, A.W., 2004. Role of pressure in angiotensin II-induced renal injury chronic servo-control of renal perfusion pressure in rats. Hypertension, 43(4):752–759. [doi:10.1161/01.HYP.0000120971.49659.6a]

    Article  PubMed  CAS  Google Scholar 

  • Ohashi, T., Sugaya, Y., Sakamoto, N., Sato, M., 2007. Hydrostatic pressure influences morphology and expression of VE-cadherin of vascular endothelial cells. J. Biomech., 40(11):2399–2405. [doi:10.1016/j.jbiomech.2006.11.023]

    Article  PubMed  Google Scholar 

  • Palmer, J.S., Boyce, M.C., 2008. Constitutive modeling of the stress-strain behavior of F-actin filament networks. Acta Biomaterialia, 4(3):597–612. [doi:10.1016/j.actbio.2007.12.007]

    Article  PubMed  Google Scholar 

  • Rodriguez-Pena, A., Prieto, M., Duwel, A., Rivas, J.V., Eleno, N., Perez-Barriocanal, F., Arevalo, M., Smith, J.D., Vary, C.P., Bernabeu, C., Lopez-Novoa, J.M., 2001. Up-regulation of endoglin, a TGF-β-binding protein, in rats with experimental renal fibrosis induced by renal mass reduction. Nephrol. Dial. Transplant., 16(Suppl. 1):34–39.

    PubMed  CAS  Google Scholar 

  • Sato, M., Muragaki, Y., Saika, S., Roberts, A.B., Ooshima, A., 2003. Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J. Clin. Invest., 112(10):1486–1494. [doi:10.1172/JCI200319270]

    PubMed  CAS  Google Scholar 

  • Shin, H.Y., Gerritsen, M.E., Bizios, R., 2002. Regulation of endothelial cell proliferation and apoptosis by cyclic pressure. Ann. Biomed. Eng., 30(3):297–304. [doi:10.1114/1.1458595]

    Article  PubMed  Google Scholar 

  • Silverman, M.D., Waters, C.R., Hayman, G.T., Wigboldus, J., Samet, M.M., Lelkes, P.I., 1999. Tissue factor activity is increased in human endothelial cells cultured under elevated static pressure. Am. J. Physiol. Cell Physiol., 277(2):233–242.

    Google Scholar 

  • Suda, T., Osajima, A., Tamura, M., Kato, H., Iwamoto, M., Ota, T., Kanegae, K., Tanaka, H., Anai, H., Kabashima, N., Okazaki, M., Nakashima, Y., 2001. Pressure-induced expression of monocyte chemoattractant protein-1 through activation of MAP kinase. Kidney Int., 60(5):1705–1715. [doi:10.1046/j.1523-1755.2001.00012.x]

    Article  PubMed  CAS  Google Scholar 

  • Wang, J.H.C., Thampatty, B.P., 2006. An introductory review of cell mechanobiology. Biomech. Model. Mechanobiol., 5(1):1–16. [doi:10.1007/s10237-005-0012-z]

    Article  PubMed  CAS  Google Scholar 

  • Zavadil, J., Bottinger, E.P., 2005. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 24(37):5764–5774. [doi:10.1038/sj.onc.1208927]

    Article  PubMed  CAS  Google Scholar 

  • Zeisberg, M., Kalluri, R., 2004. The role of epithelial-to-mesenchymal transition in renal fibrosis. J. Mol. Med., 82(3):175–181. [doi:10.1007/s00109-003-0517-9]

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ming Fan.

Additional information

The two authors contributed equally to this work

Project (No. 2007CB947802) supported by National Basic Research Program of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Fy., Xie, Xs., Fan, Jm. et al. Hydraulic pressure inducing renal tubular epithelial-myofibroblast transdifferentiation in vitro. J. Zhejiang Univ. Sci. B 10, 659–667 (2009). https://doi.org/10.1631/jzus.B0920110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0920110

Key words

CLC number

Navigation