Skip to main content
Log in

Effects of 60-day NO2 fumigation on growth, oxidative stress and antioxidative response in Cinnamomum camphora seedlings

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Objective

To study the oxidative stress and antioxidative response of Cinnamomum camphora seedlings exposed to nitrogen dioxide (NO2) fumigation.

Methods

Measurements were made up of the growth, chlorophyll content, chlorophyll fluorescence, antioxidant system and lipid peroxidation of one-year-old C. camphora seedlings exposed to NO2 (0.1, 0.5, and 4 μl/L) fumigation in open top chambers over a period of 60 d.

Results

After the first 30 d, 0.5 and 4.0 μl/L NO2 showed insignificant effects on the growth of C. camphora seedlings. However, exposure to 0.5 and 4.0 μl/L NO2 for 15 d significantly reduced their chlorophyll content (P<0.05), enhanced their malondialdehyde (MDA) content and superoxide dismutase (SOD) activity (P<0.05), and also significantly reduced the maximal quantum yield of PSII in the dark [the ratio of variable fluorescence to maximal fluorescence (F v/F m)] (P<0.05). In the latter 30 d, 0.5 μl/L NO2 showed a positive effect on the vitality of the seedlings, which was reflected by a recovery in the ratio of F v/F m and chlorophyll content, and obviously enhanced growth, SOD activity, ascorbate (AsA) content and glutathione reductase (GR) activity (P<0.05); 4.0 μl/L NO2 then showed a negative effect, indicated by significant reductions in chlorophyll content and the ratio of F v/F m, and inhibited growth (P<0.05). Conclusion: The results suggest adaptation of C. camphora seedlings to 60-d exposure to 0.1 and 0.5 μl/L NO2, but not to 60-d exposure to 4.0 μl/L NO2. C. camphora seedlings may protect themselves from injury by strengthening their antioxidant system in response to NO2-induced oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashenden, T.W., 1970. The effects of long-term exposures to SO2 and NO2 pollution on the growth of Dactylis glomerata L. and Poapratensis L. Environ. Pollut., 18(4): 249–258. [doi:10.1016/0013-9327(79)90020-X]

    Google Scholar 

  • Ashenden, T.W., Bell, S.A., Rafarel, C.R., 1990. Effects of nitrogen dioxide pollution on the growth of three fern species. Environ. Pollut., 66(4):301–318. [doi:10.1016/0269-7491(90)90147-5]

    Article  CAS  PubMed  Google Scholar 

  • Barnes, J.D., Reiling, K., Davison, A.W., Renner, C.J., 1988. Interaction between ozone and winter stress. Environ. Pollut., 53(1–4):235–254. [doi:10.1016/0269-7491(88)90037-1]

    Article  CAS  PubMed  Google Scholar 

  • Calatayud, A., Barreno, E., 2001. Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl. Environ. Pollut., 115(2): 283–289. [doi:10.1016/S0269-7491(01)00101-4]

    Article  CAS  PubMed  Google Scholar 

  • Carrasco-Rodriguez, J.L., Valle-Tascon, S.D., 2001. Impact of elevated ozone on chlorophyll a fluorescence in field-grown oat (Avena sativa). Environ. Exp. Bot., 45(2): 133–142. [doi:10.1016/S0098-8472(00)00085-X]

    Article  CAS  PubMed  Google Scholar 

  • Clyde Hill, A., Bennet, J.H., 1970. Inhibition of apparent photosynthesis by nitrogen oxides. Atmos. Environ., 4(4): 341–348. [doi:10.1016/0004-6981(70)90078-8]

    Article  Google Scholar 

  • Darrall, N.M., Jäger, H.J., 1984. Biochemical Diagnostic Tests for the Effects of Air Pollution on Plants. In: Koziol, M.J., Whatley, F.R. (Eds.), Gaseous Air Pollutants and Plant Metabolism. Butterworth, London, p.333–350.

    Google Scholar 

  • Della-Torre, G., Ferranti, F., Lupattelli, M., Pocceschi, N., Figoli, A., Nali, C., Lorenzini, G., 1998. Effects of ozone on morpho-anatomy and physiology of Hedera helix. Chemosphere, 36(4–5):651–656. [doi:10.1016/S0045-6535(97)10102-3]

    Article  CAS  Google Scholar 

  • Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A., 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J. Exp. Bot., 32(1): 93–101. [doi:10.1093/jxb/32.1.93]

    Article  CAS  Google Scholar 

  • Dixon, R.A., Paiva, N.L., 1995. Stress-induced phenylpropanoid metabolism. The Plant Cell, 7(7):1085–1097. [doi:10.1105/tpc.7.7.1085]

    Article  CAS  PubMed  Google Scholar 

  • Edjolo, A., Laffray, D., Guerrier, G., 2001. The ascorbate-glutathione cycle in the cytosolic and chloroplastic fractions of drought-tolerant and drought-sensitive poplars. J. Plant Physiol., 158(12):1511–1517. [doi:10.1078/0176-1617-00544]

    Article  CAS  Google Scholar 

  • Ella, E.S., Kawano, N., Ito, O., 2003. Importance of active oxygen-scavenging system in the recovery of rice seedlings after submergence. Plant Sci., 165(1):85–93. [doi: 10.1016/S0168-9452(03)00146-8]

    Article  CAS  Google Scholar 

  • Foyer, C.H., Halliwell, B., 1976. The presence of glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta, 133(1):21–25. [doi:10.1007/BF00386001]

    Article  Google Scholar 

  • Frankart, C., Eullaffroy, P., Vernet, G., 2002. Photosynthetic responses of Lemna minor exposed to xenobiotics, copper, and their combinations. Ecotoxicol. Environ. Safety, 53(3):439–445. [doi:10.1016/S0147-6513(02)00003-9]

    Article  CAS  PubMed  Google Scholar 

  • Genty, B., Harbinson, J., Briantais, J.M., Baker, N.R., 1990. The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem II photochemistry in leaves. Phytosynth. Res., 25(3):249–257. [doi:10.1007/BF00033166]

    Article  CAS  Google Scholar 

  • Guidi, L., Nali, C., Ciompi, S., Lorenzini, G., Soldatini, G.F., 1997. The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars. J. Exp. Bot., 48(1): 173–179. [doi:10.1093/jxb/48.1.173]

    Article  CAS  Google Scholar 

  • Horemans, N., Foyer, C.H., Potters, G., Asard, H., 2000. Ascorbate function and associated transport systems in plants. Plant Physiol. Biochem., 38(7–8):531–540. [doi: 10.1016/S0981-9428(00)00782-8]

    Article  CAS  Google Scholar 

  • Kuźniak, E., Skłodowska, M., 2001. Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea. Plant Sci., 160(4):723–731. [doi:10.1016/S0168-9452(00)00457-X]

    Article  PubMed  Google Scholar 

  • Lee, E.H., Bennett, J.H., 1982. Superoxide dismutase, a possible protective enzyme against ozone injury in snap beans (Phaseolus vulgaris L.). Plant Physiol., 69(6): 1444–1449. [doi:10.1104/pp.69.6.1444]

    Article  CAS  PubMed  Google Scholar 

  • Lai, Q.X., Bao, Z.Y., Zhu, Z.J., Qian, Q.Q., Mao, B.Z., 2007. Effects of osmotic stress on antioxidant enzymes activities in leaf discs of PSAG12-IPT modified gerbera. J. Zhejiang Univ.-Sci B, 8(7):458–464. [doi:10.1631/jzus.2007.B0458]

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler, H.K., 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148:350–382. [doi:10.1016/0076-6879(87) 48036-1]

    Article  CAS  Google Scholar 

  • Liu, Y.G., Wang, X., Zeng, G.M., Qu, D., Gu, J., Zhou, M., Chai, L.Y., 2007. Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud. Chemosphere, 69(1):99–107. [doi:10.1016/j.chemosphere.2007.04.040]

    Article  CAS  PubMed  Google Scholar 

  • Maggs, R., Ashmore, M.R., 1998. Growth and yield responses of Pakistan rice (Oryza sativa L.) cultivars to O3 and NO2. Environ. Pollut., 103(2–3):159–170. [doi:10.1016/S0269-7491(98)00129-8]

    Article  CAS  Google Scholar 

  • Makino, A., Osmond, B., 1991. Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol., 96(2):355–362. [doi:10.1104/pp.96.2.355]

    Article  CAS  PubMed  Google Scholar 

  • Marie, B.A., Ormrod, D.P., 1984. Tomato plant growth with continuous exposure to sulphur dioxide and nitrogen dioxide. Environ. Pollut. (Ser. A), 33(3):257–265. [doi:10.1016/0143-1471(84)90015-1]

    Article  CAS  Google Scholar 

  • Maxwell, K., Johnson, G.N., 2000. Chlorophyll fluorescence—a practical guide. J. Exp. Bot., 51(345):659–668. [doi:10.1093/jexbot/51.345.659]

    Article  CAS  PubMed  Google Scholar 

  • Mehlhorn, H., Óshea, J.M., Wellburn, A.R., 1991. Atmospheric ozone interacts with stress ethylene formation by plants to cause visible plant injury. J. Exp. Bot., 42(1): 17–24. [doi:10.1093/jxb/42.1.17]

    Article  CAS  Google Scholar 

  • Meloni, D.A., Oliva, M.A., Martinez, C.A., Cambraia, J., 2003. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Exp. Bot., 49(1):69–76. [doi:10.1016/S0098-8472(02)00058-8]

    Article  CAS  Google Scholar 

  • Ministry of the Environmental Protection of the People’s Republic of China, 2007. EPA. Available from http://www.sepa.gov.cn/ztbd/sjhjr/2007hjr/tpbd56/200706/P020070625532626111313.pdf [accessed on Jan. 2, 2009] (in Chinese).

  • Okano, K., Totsuka, T., Fukuzawa, T., Tazaki, T., 1985. Growth responses of plants to various concentrations of nitrogen dioxide. Environ. Pollut. (Ser. A), 38(4):361–373. [doi:10.1016/0143-1471(85)90107-2]

    Article  CAS  Google Scholar 

  • Pan, L.Q., Ren, J.Y., Liu, J., 2006. Responses of antioxidant system and LPO level to benzo(a)pyrene and benzo(k)fluoranthene in the haemolymph of the scallop Chlamys ferrari. Environ. Pollut., 141(3):443–451. [doi: 10.1016/j.envpol.2005.08.069]

    Article  CAS  PubMed  Google Scholar 

  • Pandey, J., Agrawal, M., 1994. Growth responses of tomato plants to low concentrations of sulphur dioxide and nitrogen dioxide. Scientia Horticulturae, 58(1–2):67–76. [doi:10.1016/0304-4238(94)90128-7]

    Article  CAS  Google Scholar 

  • Pleijel, H., Skärby, L., Ojanperä, K., Selldén, G., 1994. Exposure of oats, Avena sativa L., to filtered and unfiltered air in open-top chambers: effects on grain yield and quality. Environ. Pollut., 86(2):129–134. [doi:10.1016/0269-7491(94)90183-X]

    Article  CAS  PubMed  Google Scholar 

  • Potters, G., Gara, L.D., Asard, H., Horemans, N., 2002. Ascorbate and glutathione: guardians of the cell cycle, partners in crime? Plant Physiol. Biochem., 40(6–8): 537–548. [doi:10.1016/S0981-9428(02)01414-6]

    Article  CAS  Google Scholar 

  • Price, A., Lucas, P.W., Lea, P.J., 1990. Age dependent damage and glutathione metabolism in ozone fumigated barley: a leaf section approach. J. Exp. Bot., 41(10):1309–1317. [doi:10.1093/jxb/41.10.1309]

    Article  CAS  Google Scholar 

  • Qiao, Z., Murray, F., 1998. The effects of NO2 on the uptake and assimilation of nitrate by soybean plants. Environ. Exp. Bot., 39(1):33–40. [doi:10.1016/S0098-8472(97)00023-3]

    Article  Google Scholar 

  • Ra, H.S.Y., Geiser, L.H., Crang, R.F.E., 2005. Effects of season and low-level air pollution on physiology and element content of lichens from the U.S. Pacific Northwest. Sci. Total Environ., 343(1–3):155–167. [doi:10.1016/j.scitotenv.2004.10.003]

    CAS  PubMed  Google Scholar 

  • Rai, V., Vajpayee, P., Singh, S.N., Mehrotra, S., 2004. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci., 167(5):1159–1169. [doi:10.1016/j.plantsci.2004.06.016]

    Article  CAS  Google Scholar 

  • Ramge, P., Badeck, F.W., Plochl, M., 1993. Apoplastic antioxidants as decisive elimination factors within the uptake process of nitrogen dioxide into leaf tissues. New Phytol., 125(4):771–785. [doi:10.1111/j.1469-8137.1993.tb03927.x]

    Article  CAS  Google Scholar 

  • Rice-Evans, C.A., Miller, N.J., Paganga, G., 1996. Structure-antioxidant activity relationship of flavonoids and phenolic acids. Free Radic. Biol. Med., 20(7):933–956. [doi:10.1016/0891-5849(95)02227-9]

    Article  CAS  PubMed  Google Scholar 

  • Sabaratnam, S., Gupat, G., 1988. Effects of nitrogen dioxide on biochemical and physiological characteristics of soybean. Environ. Pollut., 55(2):149–158. [doi:10.1016/0269-7491(88)90125-X]

    Article  CAS  PubMed  Google Scholar 

  • Sabaratnam, S., Gupat, G., Mulchi, C., 1988. Effects of nitrogen dioxide on leaf chlorophyll and nitrogen content of soybean. Environ. Pollut., 51(2):113–120. [doi:10.1016/0269-7491(88)90200-X]

    Article  CAS  PubMed  Google Scholar 

  • Sakaki, T., Kondo, N., Sugahara, K., 1983. Breakdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation: role of active oxygens. Physiol. Plantarum, 59(1):28–34. [doi:10.1111/j.1399-3054.1983.tb06566.x]

    Article  CAS  Google Scholar 

  • Shalata, A., Tal, M., 1998. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol. Plant., 104(2):169–174. [doi:10.1034/j.1399-3054.1998.1040204.x]

    Article  CAS  Google Scholar 

  • Shimazaki, K., Yu, S.W., Sakaki, T., Tanaka, K., 1992. Differences between spinach and kidney bean plants in terms of sensitivity to fumigation with NO2. Plant Cell Physiol., 33(3):267–273.

    CAS  Google Scholar 

  • Smirnoff, N., 1996. The function and metabolism of ascorbic acid in plants. Ann. Bot., 78(6):661–669. [doi:10.1006/anbo.1996.0175]

    Article  CAS  Google Scholar 

  • Takahashi, M., Higaki, A., Nohno, M., Kamada, M., Okamura, Y., Matsui, K., Kitani, S., Morikawa, H., 2005. Differential assimilation of nitrogen dioxide by 70 taxa of roadside trees at an urban pollution level. Chemosphere, 61(5): 633–639. [doi:10.1016/j.chemosphere.2005.03.033]

    Article  CAS  PubMed  Google Scholar 

  • Tian, D.L., Fu, X.P., Fang, X., Xiang, W.H., 2007. Effect of simulated acid rain on photosynthetic characteristics in Cinnamomum camphora seedlings. Scientia Silvae Sinicae, 43:29–35 (in Chinese).

    CAS  Google Scholar 

  • Walmsley, L., Ashmore, M.R., Bell, J.N.B., 1980. Adaptation of radish Raphanus sativus L. in response to continuous exposure to ozone. Environ. Pollut. (Ser. A), 23(3):165–177. [doi:10.1016/0143-1471(80)90044-6]

    Article  CAS  Google Scholar 

  • Wu, Y.X., Tiedemann, A., 2002. Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environ. Pollut., 116(1):37–47. [doi:10.1016/S0269-7491(01)00174-9]

    Article  CAS  PubMed  Google Scholar 

  • Yu, S.W., Li, L., Shimazaki, K., 1988. Response of spinach and kidneybean plants to nitrogen dioxide. Environ. Pollut., 55(1):1–13. [doi:10.1016/0269-7491(88)90155-8]

    Article  CAS  PubMed  Google Scholar 

  • Zeevaart, A.J., 1976. Some effects of fumigation plants for short periods with NO2. Environ. Pollut., 11(2):97–108. [doi:10.1016/0013-9327(76)90022-7]

    Article  CAS  Google Scholar 

  • Zhang, L.L., Lin, Y.M., 2008. Tannins from Canarium album with potent antioxidant activity. J. Zhejiang Univ.-Sci. B, 9(5):407–415. [doi:10.1631/jzus.B0820002]

    Article  CAS  PubMed  Google Scholar 

  • Zheng, W.J., 1983. Chinese Tree Records. Volume 1, Chinese Forestry Press, Beijing, China, p.749 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-xu Chen.

Additional information

Project supported by Zhejiang Keystone Projects (No. 2005C22056), and the Zhejiang Provincial Natural Science Foundation of China (No. Y5080011)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Zm., Chen, Yx., Du, Gj. et al. Effects of 60-day NO2 fumigation on growth, oxidative stress and antioxidative response in Cinnamomum camphora seedlings. J. Zhejiang Univ. Sci. B 11, 190–199 (2010). https://doi.org/10.1631/jzus.B0910350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0910350

Key words

CLC number

Navigation