Skip to main content
Log in

Knockdown of OLA1, a regulator of oxidative stress response, inhibits motility and invasion of breast cancer cells

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

To explore the role of a novel Obg-like ATPase 1 (OLA1) in cancer metastasis, small interference RNA (siRNA) was used to knockdown the protein, and the cells were subjected to in vitro cell migration and invasion assays. Knockdown of OLA1 significantly inhibited cell migration and invasion in breast cancer cell line MDA-MB-231. The knockdown caused no changes in cell growth but affected ROS production. In wound-healing assays, decreased ROS in OLA1-knockdown cells were in situ associated with the cells’ decreased motile morphology. Further, treatment of N-acetylcysteine, a general ROS scavenger, blunted the motility and invasiveness of MDA-MB-231 cells, similar to the effect of OLA1-knockdown. These results suggest that knockdown of OLA1 inhibits breast cancer cell migration and invasion through a mechanism that involves the modulation of intracellular ROS levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrova, A.Y., Kopnin, P.B., Vasiliev, J.M., Kopnin, B.P., 2006. ROS up-regulation mediates Ras-induced changes of cell morphology and motility. Exp. Cell Res., 312(11): 2066–2073. [doi:10.1016/j.yexcr.2006.03.004]

    Article  CAS  PubMed  Google Scholar 

  • Chène, P., 2002. ATPases as drug targets: learning from their structure. Nat. Rev. Drug Discov., 1(9):665–673. [doi:10.1038/nrd894]

    Article  PubMed  Google Scholar 

  • Ferraro, D., Corso, S., Fasano, E., Panieri, E., Santangelo, R., Borrello, S., Giordano, S., Pani, G., Galeotti, T., 2006. Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene, 25(26): 3689–3698. [doi:10.1038/sj.onc.1209409]

    Article  CAS  PubMed  Google Scholar 

  • Fini, M.A., Orchard-Webb, D., Kosmider, B., Amon, J.D., Kelland, R., Shibao, G., Wright, R.M., 2008. Migratory activity of human breast cancer cells is modulated by differential expression of xanthine oxidoreductase. J. Cell. Biochem., 105(4):1008–1026. [doi:10.1002/jcb.21901]

    Article  CAS  PubMed  Google Scholar 

  • Gradia, D.F., Rau, K., Umaki, A.C., de Souza, F.S., Probst, C.M., Correa, A., Holetz, F.B., Avila, A.R., Krieger, M.A., Goldenberg, S., et al., 2009. Characterization of a novel Obg-like ATPase in the protozoan Trypanosoma cruzi. Int. J. Parasitol., 39(1):49–58. [doi:10.1016/j.ijpara.2008.05.019]

    Article  CAS  PubMed  Google Scholar 

  • Hortobagyi, G.N., de la Garza Salazar, J., Pritchard, K., Amadori, D., Haidinger, R., Hudis, C.A., Khaled, H., Liu, M.C., Martin, M., Namer, M., et al., 2005. The global breast cancer burden: variations in epidemiology and survival. Clin. Breast Cancer, 6(5):391–401. [doi:10.3816/CBC.2005.n.043]

    Article  PubMed  Google Scholar 

  • Huo, Y., Qiu, W.Y., Pan, Q., Yao, Y.F., Xing, K., Lou, M.F., 2009. Reactive oxygen species (ROS) are essential mediators in epidermal growth factor (EGF)-stimulated corneal epithelial cell proliferation, adhesion, migration, and wound healing. Exp. Eye Res., in press [Epub ahead of print]. [doi:10.1016/j.exer.2009.07.012]

  • Ikeda, S., Yamaoka-Tojo, M., Hilenski, L., Patrushev, N.A., Anwar, G.M., Quinn, M.T., Ushio-Fukai, M., 2005. IQGAP1 regulates reactive oxygen species-dependent endothelial cell migration through interacting with Nox2. Arterioscler. Thromb. Vasc. Biol., 25(11):2295–2300. [doi:10.1161/01.ATV.0000187472.55437.af]

    Article  CAS  PubMed  Google Scholar 

  • Koller-Eichhorn, R., Marquardt, T., Gail, R., Wittinghofer, A., Kostrewa, D., Kutay, U., Kambach, C., 2007. Human OLA1 defines an ATPase subfamily in the Obg family of GTP-binding proteins. J. Biol. Chem., 282(27):19928–19937. [doi:10.1074/jbc.M700541200]

    Article  CAS  PubMed  Google Scholar 

  • Moldovan, L., Moldovan, N.I., Sohn, R.H., Parikh, S.A., Goldschmidt-Clermont, P.J., 2000. Redox changes of cultured endothelial cells and actin dynamics. Circ. Res., 86(5):549–557.

    CAS  PubMed  Google Scholar 

  • Moldovan, L., Mythreye, K., Goldschmidt-Clermont, P.J., Satterwhite, L.L., 2006. Reactive oxygen species in vascular endothelial cell motility. Roles of NAD(P)H oxidase and Rac1. Cardiovasc. Res., 71(2):236–246. [doi:10.1016/j.cardiores.2006.05.003]

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa, M., 2008. Reactive oxygen species in tumor metastasis. Cancer Lett., 266(1):53–59. [doi:10.1016/j.canlet.2008.02.031]

    Article  CAS  PubMed  Google Scholar 

  • Olson, M.F., Sahai, E., 2009. The actin cytoskeleton in cancer cell motility. Clin. Exp. Metastasis, 26(4):273–287. [doi:10.1007/s10585-008-9174-2]

    Article  PubMed  Google Scholar 

  • Pendyala, S., Gorshkova, I.A., Usatyuk, P., He, D., Pennathur, A., Lambeth, J.D., Thannickal, V.J., Natarajan, V., 2008. Role of Nox4 and Nox2 in hyperoxia-induced reactive oxygen species generation and migration of human lung endothelial cells. Antioxid. Redox Signal, 11(4):747–764. [doi:10.1089/ars.2008.2203]

    Google Scholar 

  • Radisky, D.C., Levy, D.D., Littlepage, L.E., Liu, H., Nelson, C.M., Fata, J.E., Leake, D., Godden, E.L., Albertson, D.G., Nieto, M.A., et al., 2005. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436(7047):123–127. [doi:10.1038/nature03688]

    Article  CAS  PubMed  Google Scholar 

  • Shim, H., Shim, E., Lee, H., Hahn, J., Kang, D., Lee, Y.S., Jeoung, D., 2006. CAGE, a novel cancer/testis antigen gene, promotes cell motility by activation ERK and p38 MAPK and downregulating ROS. Mol. Cells, 21(3): 367–375.

    CAS  PubMed  Google Scholar 

  • Steeg, P.S., 2006. Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med., 12(8):895–904. [doi:10.1038/nm1469]

    Article  CAS  PubMed  Google Scholar 

  • Storz, P., 2005. Reactive oxygen species in tumor progression. Front. Biosci., 10(1–3):1881–1896. [doi:10.2741/1667]

    Article  CAS  PubMed  Google Scholar 

  • Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., Telser, J., 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 39(1):44–84. [doi:10.1016/j.biocel.2006.07.001]

    Article  CAS  PubMed  Google Scholar 

  • Weigelt, B., Peterse, J.L., van’t Veer, L.J., 2005. Breast cancer metastasis: markers and models. Nat. Rev. Cancer, 5(8): 591–602. [doi:10.1038/nrc1670]

    Article  CAS  PubMed  Google Scholar 

  • Wu, W.S., 2006. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev., 25(4):695–705. [doi:10.1007/s10555-006-9037-8]

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Rubio, V., Lieberman, M.W., Shi, Z.Z., 2009. OLA1, an Obg-like ATPase, suppresses antioxidant response via nontranscriptional mechanisms. Proc. Natl. Acad. Sci. USA, 106(36):15356–15361. [doi:10.1073/pnas.0907213106]

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu Zheng or Zheng-zheng Shi.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2004CB518707) and the Methodist Hospital Research Institute, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Jw., Rubio, V., Zheng, S. et al. Knockdown of OLA1, a regulator of oxidative stress response, inhibits motility and invasion of breast cancer cells. J. Zhejiang Univ. Sci. B 10, 796–804 (2009). https://doi.org/10.1631/jzus.B0910009

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0910009

Key words

CLC number

Navigation