Skip to main content
Log in

Mathematical models of canine right and left atria cardiomyocytes

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

The aim of this study is to build two mathematical models of canine ionic currents specific to right atria and left atria. The canine left atria mathematical model was firstly modified from the Ramirez-Nattel-Courtemanche (RNC) model using the recently available experimental data of ionic currents and was further developed based on our own experimental data. A model of right atria was then built by considering the differences between right atria and left atria. The two developed models well reproduced the experimental data on action potential morphology, the rate dependence, and action potential duration restitution. They are useful for investigating the mechanisms underlying the heterogeneity of canine regional action potentials and would help the simulation of whole heart excitation propagation and cardiac arrhythmia in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beeler, G.W., Reuter, H., 1977. Reconstruction of the action potential of ventricular myocardial fibres. The Journal of Physiology, 268(1):177–210.

    CAS  PubMed  Google Scholar 

  • Cha, T.J., Ehrlich, J.R., Zhang, L., Nattel, S., 2004. Atrial ionic remodeling induced by atrial tachycardia in the presence of congestive heart failure. Circulation, 110(12):1520–1526. [doi:10.1161/01.CIR.0000142052.03565.87]

    Article  PubMed  Google Scholar 

  • Cha, T.J., Ehrlich, J.R., Zhang, L., Chartier, D., Leung, T.K., Nattel, S., 2005. Atrial tachycardia remodeling of pulmonary vein cardiomyocytes: comparison with left atrium and potential relation to arrhythmogenesis. Circulation, 111(6):728–735. [doi:10.1161/01.CIR.0000155240.05251.D0]

    Article  PubMed  Google Scholar 

  • Courtemanche, M., Ramirez, R.J., Nattel, S., 1998. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. American Journal of Physiology, 275(5):H301–H321.

    CAS  PubMed  Google Scholar 

  • Demir, S.S., Clark, J.W., Murphey, C.R., Giles, W.R., 1994. A mathematical model of a rabbit sinoatrial node cell. American Journal of Physiology, 266(3):C832–C852.

    CAS  PubMed  Google Scholar 

  • Dun, W., Yagi, T., Rosen, M.R., Boyden, P.A., 2003. Calcium and potassium currents in cells from adult and aged canine right atria. Cardiovascular Research, 58(3):526–534. [doi:10.1016/S0008-6363(03)00288-8]

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich, J.R., Cha, T.J., Zhang, L., Chartier, D., Melnyk, P., Hohnloser, H., Nattel, S., 2003. Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. The Journal of Physiology, 551(3):801–813. [doi:10.1113/jphysiol.2003.046417]

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich, J.R., Cha, T.J., Zhang, L., Chartier, D., Villeneuve, L., Hebert, T.E., Nattel, S., 2004. Characterization of a hyperpolarization-activated time-dependent potassium current in canine cardiomyocytes from pulmonary vein myocardial sleeves and left atrium. The Journal of Physiology, 557(2):583–597. [doi:10.1113/jphysiol.2004.061119]

    Article  CAS  PubMed  Google Scholar 

  • Fareh, S., Villemaire, C., Nattel, S., 1998. Importance of refractoriness heterogeneity in the enhanced vulnerability to atrial fibrillation induction caused by tachycardia-induced atrial electrical remodeling. Circulation, 98(20):2202–2209.

    CAS  PubMed  Google Scholar 

  • Feng, J., Yue, L., Wang, Z., Nattel, S., 1998. Ionic mechanisms of regional action potential heterogeneity in the canine right atrium. Circulation Research, 83(5):541–551.

    CAS  PubMed  Google Scholar 

  • Garfinkel, A., Kim, Y.H., Voroshilovsky, O., Qu, Z., Kil, J.R., Lee, M.H., Karagueuzian, H.S., Weiss, J.N., Chen, P.S., 2000. Preventing ventricular fibrillation by flattening cardiac restitution. Proceedings of the National Academy of Sciences, 97(11):6061–6066. [doi:10.1073/pnas.090492697]

    Article  CAS  Google Scholar 

  • Hodgkin, A.L., Huxley, A.F., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4):500–544.

    CAS  PubMed  Google Scholar 

  • Karma, A., 1994. Electrical alternans and spiral wave breakup in cardiac tissue. Chaos, 4(3):461–472. [doi:10.1063/1.166024]

    Article  PubMed  Google Scholar 

  • Kneller, J., Ramirez, R.J., Chertier, D., Courtemanche, M., Nattel, S., 2002. Time-dependent transients in an ionically based mathematical model of the canine atrial action potential. American Journal of Physiology, 282(4):H1437–H1451.

    CAS  PubMed  Google Scholar 

  • Koller, M.L., Riccio, M.L., Gilmour, R.F., 1998. Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. American Journal of Physiology, 275(5):H1635–H1642.

    CAS  PubMed  Google Scholar 

  • Li, D., Melnyk, P., Feng, J., Wang, Z., Petrecca, K., Shrier, A., Nattel, S., 2000. Effects of experimental heart failure on atrial cellular and ionic electrophysiology. Circulation, 101(22):2631–2638.

    CAS  PubMed  Google Scholar 

  • Li, D., Zhang, L., Kneller, J., Nattel, S., 2001. Potential ionic mechanism for repolarization differences between canine right and left atrium. Circulation Research, 88(11):1168–1175. [doi:10.1161/hh1101.091266]

    Article  CAS  PubMed  Google Scholar 

  • Lindblad, D.S., Murphey, C.R., Clark, J.W., Giles, W.R., 1996. A model of the action potential and underlying membrane currents in a rabbit atrial cell. American Journal of Physiology, 271(4):H1666–H1696.

    CAS  PubMed  Google Scholar 

  • Luo, C.H., Rudy, Y., 1991. A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. Circulation Research, 68(6):1501–1526.

    CAS  PubMed  Google Scholar 

  • Luo, C.H., Rudy, Y., 1994a. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circulation Research, 74(6):1071–1096.

    CAS  PubMed  Google Scholar 

  • Luo, C.H., Rudy, Y., 1994b. A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circulation Research, 74(6):1097–1113.

    CAS  PubMed  Google Scholar 

  • Noble, D., 1960. Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations. Nature, 188(4749):495–497. [doi:10.1038/188495b0]

    Article  CAS  Google Scholar 

  • Nygren, A., Fiset, C., Firek, L., Clark, J.W., Lindblad, D.S., Clark, R.B., Giles, W.R., 1998. Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circulation Research, 82(1):63–81.

    CAS  PubMed  Google Scholar 

  • Qu, Z., Weiss, J.N., Garfinkel, A., 1999. Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study. American Journal of Physiology, 276(1):H269–H283.

    CAS  PubMed  Google Scholar 

  • Ramirez, R.J., Nattel, S., Courtemanche, M., 2000. Mathematical analysis of canine atrial action potentials: rate, regional factors, and electrical remodeling. American Journal of Physiology, 279(4):H1767–H1785.

    CAS  PubMed  Google Scholar 

  • Rudy, Y., Luo, C.H., 1993. Cellular responses to electrical stimulation: a study using a model of the ventricular cardiac action potential. Advances in Experimental Medicine and Biology, 346(1):79–90.

    CAS  PubMed  Google Scholar 

  • ten Tusscher, K.H.W.J., Noble, D., Noble, P.J., Panfilov, A.V., 2004. A model for human ventricular tissue. American Journal of Physiology, 286(4):H1573–H1589. [doi:10. 1152/ajpheart.00794.2003]

    PubMed  Google Scholar 

  • Wang, Z., Fermini, B., Nattel, S., 1993. Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circulation Research, 73(6):1061–1076.

    CAS  PubMed  Google Scholar 

  • Wang, Z., Feng, J., Shi, H., Pond, A., Nerbonne, J.M., Nattel, S., 1999. Potential molecular basis of different physiological properties of the transient outward K+ current in rabbit and human atrial myocytes. Circulation Research, 84(5):551–561.

    CAS  PubMed  Google Scholar 

  • Xia, L., Zhang, Y., Zhang, H., Wei, Q., Liu, F., Crozier, S., 2006. Simulation of Brugada syndrome using cellular and three-dimensional whole-heart modeling approaches. Physiological Measurement, 27(11):1125–1142. [doi:10.1088/0967-3334/27/11/006]

    Article  PubMed  Google Scholar 

  • Yue, L., Feng, J., Gaspo, R., Li, G.R., Wang, Z., Nattel, S., 1997. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circulation Research, 81(4):512–525.

    CAS  PubMed  Google Scholar 

  • Zhang, H., Holden, A.V., Boyet, M.R., 2001. Gradient model versus mosaic model of the sinoatrial node. Circulation, 103:584–588.

    CAS  PubMed  Google Scholar 

  • Zobel, C., Cho, H.C., Nguyen, T., Pekhletski, R., Diaz, R.J., Wilson, G.J., Backx, P.H., 2003. Molecular dissection of the inward rectifier potassium current (IK1) in rabbit cardiomyocytes: evidence for heteromeric co-assembly of Kir2.1 and Kir2.2. The Journal of Physiology, 550(2):365–372. [doi:10.1113/jphysiol.2002.036400]

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Xia.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2007CB512100), the National High-Tech R & D Program (863) of China (No. 2006AA02Z307), and the National Natural Science Foundation of China (No. 30570484)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, L., Gong, Yl., Zhu, Xw. et al. Mathematical models of canine right and left atria cardiomyocytes. J. Zhejiang Univ. Sci. B 11, 402–416 (2010). https://doi.org/10.1631/jzus.B0900346

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0900346

Key words

CLC number

Navigation