Skip to main content
Log in

A facile approach to construct hybrid multi-shell calcium phosphate gene particles

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

The calcium phosphate (CaP) particles have attracted much attention in gene therapy. How to construct stable gene particles was the determining factor. In this study, hybrid multi-shell CaP gene particles were successfully constructed. First, CaP nanoparticles served as a core and were coated with DNA for colloidal stabilization. The ζ-potential of DNA-coated CaP nanoparticles was −15 mV. Then polyethylenimine (PEI) was added and adsorbed outside of the DNA layer due to the electrostatic attraction. The ζ-potential of hybrid multi-shell CaP particles was slightly positive. With addition of PEI, the hybrid multi-shell particles could condense DNA effectively, which was determined by ethidium bromide (EtBr) exclusion assay. The hybrid particles were spherical and uniform with diameters of about 150 nm at proper conditions. By simple modification of PEI, the hybrid multi-shell CaP gene particles were successfully constructed. They may have great potential in gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bausinger, R., Gersdorff, K.V., Braeckmans, K., Ogris, M., Wagner, E., Brauchle, C., Zumbusch, A., 2006. The transport of nanosized gene carriers unraveled by live-cell imaging. Angew. Chem. Int. Ed., 45(10):1568–1572. [doi:10.1002/anie.200503021]

    Article  CAS  Google Scholar 

  • Bisht, S., Bhakta, G., Mitra, S., Maitra, A., 2005. DNA loaded calcium phosphate nanoparticles: highly efficient non-viral vector for gene delivery. Int. J. Pharm., 288(1): 157–168. [doi:10.1016/j.ijpharm.2004.07.035]

    Article  CAS  PubMed  Google Scholar 

  • Dutton, M.D., Varhol, R.J., Dixon, D.G., 1995. Technical considerations for the use of ethidium bromide in the quantitative analysis of nucleic acids. Anal. Biochem., 230(2):353–355. [doi:10.1006/abio.1995.1488]

    Article  CAS  PubMed  Google Scholar 

  • El-Aneed, A., 2004. An overview of current delivery systems in cancer gene therapy. J. Controlled Release, 94(1):1–14. [doi:10.1016/j.jconrel.2003.09.013]

    Article  CAS  Google Scholar 

  • Fischer, D., Bieber, T., Lin, Y.X., Elsasser, H.P., Kissel, T., 1999. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res., 16(8):1273–1279. [doi:10.1023/A:1014861900478]

    Article  CAS  PubMed  Google Scholar 

  • Kakizawa, Y., Miyata, K., Furukawa, S., Kataoka, K., 2004. Size-controlled formation of a calcium phosphate-based organic-inorganic hybrid vector for gene delivery using poly(ethylene glycol)-block-poly(aspartic acid). Adv. Mater., 16(8):699–702. [doi:10.1002/adma.200305782]

    Article  CAS  Google Scholar 

  • Kakizawa, Y., Furukawa, S., Ishii, A., Kataoka, K., 2006. Organic-inorganic hybrid-nanocarrier of siRNA constructing through the self-assembly of calcium phosphate and PEG-based block aniomer. J. Controlled Release, 111(3):368–370. [doi:10.1016/j.jconrel.2006.01.004]

    Article  CAS  Google Scholar 

  • Lungwitz, U., Breunig, M., Blunk, T., Gopferich, A., 2005. Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm., 60(2):247–266. [doi:10.1016/j.ejpb.2004.11.011]

    Article  CAS  PubMed  Google Scholar 

  • Okazaki, M., Yoshida, Y., Yamaguchi, S., Kaneno, M., Elliott, J.C., 2001. Affinity binding phenomena of DNA onto apatite crystals. Biomaterials, 22(18):2459–2464. [doi:10.1016/S0142-9612(00)00433-6]

    Article  CAS  PubMed  Google Scholar 

  • Petersen, H., Kunath, K., Martin, A.L., Stolnik, S., Roberts, C.J., Davies, M.C., Kissel, T., 2002. Star-shaped poly (ethyleneglycol)-block-polyethylenimine copolymers enhance DNA condensation of low molecular weight polyethylenimines. Biomacromolecules, 3(5):926–936. [doi:10.1021/bm025539z]

    Article  CAS  PubMed  Google Scholar 

  • Radler, J.Q., Koltover, J., Salditt, T., 1997. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science, 275(5301):810–814. [doi:10.1126/science.275.5301.810]

    Article  CAS  PubMed  Google Scholar 

  • Ren, K.F., Ji, J., Shen, J.C., 2005a. Construction of polycation-based non-viral DNA nanoparticles and polyanion multilayers via layer-by-layer self-assembly. Macromol. Rapid Commun., 26(20):1633–1638. [doi:10.1002/marc.200500482]

    Article  CAS  Google Scholar 

  • Ren, K.F., Wang, Y.X., Ji, J., Lin, Q.K., Shen, J.C., 2005b. Construction and deconstruction of PLL/DNA multilayered films for DNA delivery: effect of ionic strength. Colloids Surf. B: Biointerfaces, 46(2):63–69. [doi:10.1016/j.colsurfb.2005.09.004]

    Article  CAS  Google Scholar 

  • Ren, K.F., Ji, J., Shen, J.C., 2006. Tunable DNA release from cross-linked ultrathin DNA/PLL multilayered films. Bioconjugate Chem., 17(1):77–83. [doi:10.1021/Bc050264g]

    Article  CAS  Google Scholar 

  • Roy, I., Mitra, S., Maitra, A., Mozumdar, S., 2003. Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. Int. J Pharm., 250(1):25–33. [doi:10.1016/S0378-5173(02)00452-0]

    Article  CAS  PubMed  Google Scholar 

  • Sharma, V.K., Thomas, M., Klibanov, A.M., 2005. Mechanistic studies on aggregation of polyethylenimine-DNA complexes and its prevention. Biotechnol. Bioeng., 90(5): 614–620. [doi:10.1002/Bit.20444]

    Article  CAS  PubMed  Google Scholar 

  • Sokolova, V., Epple, M., 2008. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew. Chem. Int. Ed., 47(8):1382–1395. [doi:10.1002/anie.200703039]

    Article  CAS  Google Scholar 

  • Sokolova, V., Radtke, I., Heumann, R., Epple, M., 2006. Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles. Biomaterials, 27(16): 3147–3153. [doi:10.1016/j.biomaterials.2005.12.030]

    Article  CAS  PubMed  Google Scholar 

  • Sokolova, V., Kovtun, A., Prymak, O., Zaika, W.M., Kubareva, E.A., Romanova, E.A., Oretskaya, T.S., Heumann, R., Epple, M., 2007. Functionalisation of calcium phosphate nanoparticles by oligonucleotides and their application for gene silencing. J Mater. Chem., 17(8):721–727. [doi: 10.1039/B612699e]

    Article  CAS  Google Scholar 

  • Thomas, M., Klibanov, A.M., 2002. Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. USA, 99(23):14640–14645. [doi: 10.1073/pnas.192581499]

    Article  CAS  PubMed  Google Scholar 

  • Uherek, C., Wels, W., 2000. DNA-carrier proteins for targeted gene delivery. Adv. Drug Deliv. Rev., 44(2-3):153–166. [doi:10.1016/S0169-409X(00)00092-2]

    Article  CAS  PubMed  Google Scholar 

  • Wagner, E., Kloeckner, J., 2006. Gene delivery using polymer therapeutics. Adv. Polym. Sci., 192:135–173. [doi:10.1007/12_023]

    Article  CAS  Google Scholar 

  • Wang, Y.X., Shen, J.C., 2005. Progress in non-viral gene delivery systems fabricated via supramolecular assembly. Chin. Sci. Bull., 50(4):289–294. [doi:10.1360/04wb0038]

    CAS  Google Scholar 

  • Wang, Y.X., Chen, P., Shen, J.C., 2006. The development and characterization of a glutathione-sensitive cross-linked polyethylenimine gene vector. Biomaterials, 27(30):5292–5298. [doi:10.1016/j.biomaterials.2006.05.049]

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y.X., Chen, P., Shen, J.C., 2007. A facile entrapment approach to construct PEGylated polyplexes for improving stability in physiological condition. Colloids Surf. B: Biointerfaces, 58(2):188–196. [doi:10.1016/j.colsurfb.2007.03.008]

    Article  CAS  Google Scholar 

  • Welzel, T., Radtke, I., Meyer-Zaika, W., Heumann, R., Epple, M., 2004. Transfection of cells with custom-made calcium phosphate nanoparticles coated with DNA. J. Mater. Chem., 14(14):2213–2217. [doi:10.1039/b401644k]

    Article  CAS  Google Scholar 

  • Zhang, Y., Kohler, N., Zhang, M., 2002. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 23(7):1553–1561. [doi:10.1016/S0142-9612(01)00267-8]

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-xiang Wang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 50873089) and the Natural Science Foundation of Zhejiang Province, China (No. Y407173)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Zx., Zhang, R., Wang, Yx. et al. A facile approach to construct hybrid multi-shell calcium phosphate gene particles. J. Zhejiang Univ. Sci. B 11, 292–297 (2010). https://doi.org/10.1631/jzus.B0900305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0900305

Key words

CLC number

Navigation