Skip to main content
Log in

Neural decoding based on probabilistic neural network

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Brain-machine interface (BMI) has been developed due to its possibility to cure severe body paralysis. This technology has been used to realize the direct control of prosthetic devices, such as robot arms, computer cursors, and paralyzed muscles. A variety of neural decoding algorithms have been designed to explore relationships between neural activities and movements of the limbs. In this paper, two novel neural decoding methods based on probabilistic neural network (PNN) in rats were introduced, the PNN decoder and the modified PNN (MPNN) decoder. In the experiment, rats were trained to obtain water by pressing a lever over a pressure threshold. Microelectrode array was implanted in the motor cortex to record neural activity, and pressure was recorded by a pressure sensor synchronously. After training, the pressure values were estimated from the neural signals by PNN and MPNN decoders. Their performances were evaluated by a correlation coefficient (CC) and a mean square error (MSE). The results show that the MPNN decoder, with a CC of 0.8657 and an MSE of 0.2563, outperformed the traditionally-used Wiener filter (WF) and Kalman filter (KF) decoders. It was also observed that the discretization level did not affect the MPNN performance, indicating that the MPNN decoder can handle different tasks in BMI system, including the detection of movement states and estimation of continuous kinematic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brockwell, A.E., Rojas, A.L., Kass, R.E., 2004. Recursive bayesian decoding of motor cortical signals by particle filtering. J. Neurophysiol., 91(4):1899–1907. [doi:10.1152/jn.00438.2003]

    Article  CAS  PubMed  Google Scholar 

  • Brown, E.N., Frank, L.M, Tang, D., Quirk, M.C., Wilson, M.A., 1998. A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J. Neurosci., 18(18):7411–7425.

    CAS  PubMed  Google Scholar 

  • Carmena, J.M., Lebedev, M.A., Crist, R.E., O’Doherty, J.E., Santucci, D.M., 2003. Learning to control a brain- machine interface for reaching and grasping by primates. PLoS. Biol., 1(2):E42. [doi:10.1371/journal.pbio.0000042]

    Article  PubMed  Google Scholar 

  • Eden, U.T., Frank, L.M., Barbieri, R., Solo, V., Brown, E.N., 2004. Dynamic analysis of neural encoding by point process adaptive filtering. Neural Comput., 16(5):971–998. [doi:10.1162/089976604773135069]

    Article  PubMed  Google Scholar 

  • Feng, Z.Y., Chen, W.D., Ye, X.S., 2007. A remote control training system for rat navigation in complicated environment. J. Zhejiang Univ.-Sci. A, 8(2):323–330. [doi:10.1631/jzus.2007.A0323]

    Article  Google Scholar 

  • Gage, G.J., Ludwig, K.A., Otto, K.J., Ionides, E.L., Kipke, D.R., 2005. Naive coadaptive cortical control. J. Neural Eng., 2(2):52–63. [doi:10.1088/1741-2560/2/2/006]

    Article  PubMed  Google Scholar 

  • Georgopoulos, A.P., Kettner, R.E., Schwartz, A.B., 1988. Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. J. Neurosci., 8(8):2928–2937.

    CAS  PubMed  Google Scholar 

  • Georgopoulos, A.P., Lurito, J.T., Petrides, M., 1989. Mental rotation of the neuronal population vector. Science, 243(4888):234–236. [doi:10.1126/science.2911737]

    Article  CAS  PubMed  Google Scholar 

  • Hatsopoulos, N., Joshi, J., O’Leary, J.G., 2004. Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles. J. Neurophysiol., 92(2): 1165–1174. [doi:10.1152/jn.01245.2003]

    Article  PubMed  Google Scholar 

  • Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., 2006. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442(7099): 164–171. [doi:10.1038/nature04970]

    Article  CAS  PubMed  Google Scholar 

  • Lebedev, M.A., Nicolelis, M.A., 2006. Brain-machine interfaces: past, present and future. Trends Neurosci., 29(9): 536–546. [doi:10.1016/j.tins.2006.07.004]

    Article  CAS  PubMed  Google Scholar 

  • Lebedev, M.A., Carmena, J.M., O’Doherty, J.E., 2005. CCortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface. J. Neurosci., 25(19):4681–4693. [doi:10.1523/JNEUROSCI.4088-04.2005]

    Article  CAS  PubMed  Google Scholar 

  • Ministry of Health of the People’s Republic of China, 2000. Guide for Animal Experiment Technology. Ministry of Health of the People’s Republic of China, p.9–20.

  • Nicolelis, M.A., 2003. Brain-machine interfaces to restore motor function and probe neural circuits. Nature Rev. Neurosci., 4(5):417–422. [doi:10.1038/nrn1105]

    Article  CAS  Google Scholar 

  • Paxinos, G., Watson, C.R., Emson, P.C., 1980. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. J. Neurosci. Methods, 3(2):129–149. [doi:10.1016/0165-0270(80)90021-7]

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, E.M., McIntosh, J.S., Durelli, L., 1978. Fine control of operantly conditioned firing patterns of cortical neurons. Exp. Neurol., 61(2):349–369. [doi:10.1016/0014-4886(78)90252-2]

    Article  CAS  PubMed  Google Scholar 

  • Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R., Donoghue, J.P., 2002. Instant neural control of a movement signal. Nature, 416(6877):141–142. [doi:10.1038/416141a]

    Article  CAS  PubMed  Google Scholar 

  • Shoham, S., Paninski, L.M., Fellows, M.R., Hatsopoulos, N.G., Donoghue, J.P., 2005. Statistical encoding model for a primary motor cortical brain-machine interface. IEEE Trans. Biomed. Eng., 52(7):1312–1322. [doi:10.1109/TBME.2005.847542]

    Article  PubMed  Google Scholar 

  • Smith, A.C., Brown, E.N., 2003. Estimating a state-space model from point process observations. Neural Comput., 15(5):965–991. [doi:10.1162/089976603765202622]

    Article  PubMed  Google Scholar 

  • Specht, D.F., 1990. Probabilistic neural networks. Neural Netw., 3(1):109–118. [doi:10.1016/0893-6080(90)90049-Q]

    Article  Google Scholar 

  • Taylor, D.M., Tillery, S.I., Schwartz, A.B., 2002. Direct cortical control of 3D neuroprosthetic devices. Science, 296(5574):1829–1832. [doi:10.1126/science.1070291]

    Article  CAS  PubMed  Google Scholar 

  • Velliste, M., Perel, S., Spalding, M.C., 2008. Cortical control of a prosthetic arm for self-feeding. Nature, 453(7198): 1098–1101. [doi:10.1038/nature06996]

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Paiva, A.R.C., Príncipe, J.C., Sanchez, J.C., 2009. Sequential monte carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces. Neural Comput., 21(10):2894–2930. [doi:10.1162/neco.2009.01-08-699]

    Article  PubMed  Google Scholar 

  • Wessberg, J., Stambaugh, C.R., Kralik, J.D., Beck, P.D., Laubach, M., Chapin, J.K., Kim, J., Biggs, S.J., Srinivasan, M.A., Nicolelis, M.A.L., 2000. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature, 408(6810):361–365. [doi:10.1038/35042582]

    Article  CAS  PubMed  Google Scholar 

  • Wu, W., Black, M.J., Gao, Y., 2002. Inferring Hand Motion from Multi-Cell Recordings in Motor Cortex Using a Kalman Filter. Workshop on Motor Control in Humans and Robots: On the Interplay of Real Brains and Artificial Devices. Edinburgh, Scotland (UK), p.66–73.

  • Wu, W., Black, M.J., Gao, Y., Bienenstock, E., Serruya, M., 2003. Neural Deocoding of Cursor Motion Using a Kalman Filter. Advances in Neural Information Processing Systems 15. Cambridge, MIT Press, MA, p.1–8.

  • Wu, W., Black, M.J., Mumford, D., Gao, Y., Bienenstock, E., 2004. Modeling and decoding motor cortical activity using a switching Kalman filter. IEEE Trans. Biomed. Eng., 51(6):933–942. [doi:10.1109/TBME.2004.826666]

    Article  PubMed  Google Scholar 

  • Wu, W., Gao, Y., Bienenstock, E., Donoghue, J.P., Black, M.J., 2006. Bayesian population decoding of motor cortical activity using a Kalman filter. Neural Comput., 18(1): 80–118. [doi:10.1162/089976606774841585]

    Article  PubMed  Google Scholar 

  • Ye, X.S., Wang, P., Liu, J., 2008. A portable telemetry system for brain stimulation and neuronal activity recording in freely behaving small animals. J. Neurosci. Methods, 174(2):186–193. [doi:10.1016/j.jneumeth.2008.07.002]

    Article  PubMed  Google Scholar 

  • Zhang, K., Ginzburg, I., McNaughton, B.L., 1998. Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J. Neurophysiol., 79(2):1017–1044.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-hua Dai.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 30800287 and 60703038) and the Natural Science Foundation of Zhejiang Province, China (No. Y2090707)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Zhang, Sm., Zhang, Hj. et al. Neural decoding based on probabilistic neural network. J. Zhejiang Univ. Sci. B 11, 298–306 (2010). https://doi.org/10.1631/jzus.B0900284

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0900284

Key words

CLC number

Navigation