Skip to main content
Log in

Mitochondrial functions on oocytes and preimplantation embryos

  • Review
  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Oocyte quality has long been considered as a main limiting factor for in vitro fertilization (IVF). In the past decade, extensive observations demonstrated that the mitochondrion plays a vital role in the oocyte cytoplasm, for it can provide adenosine triphosphate (ATP) for fertilization and preimplantation embryo development and also act as stores of intracellular calcium and proapoptotic factors. During the oocyte maturation, mitochondria are characterized by distinct changes of their distribution pattern from being homogeneous to heterogeneous, which is correlated with the cumulus apoptosis. Oocyte quality decreases with the increasing maternal age. Recent studies have shown that low quality oocytes have some age-related dysfunctions, which include the decrease in mitochondrial membrane potential, increase of mitochondrial DNA (mtDNA) damages, chromosomal aneuploidies, the incidence of apoptosis, and changes in mitochondrial gene expression. All these dysfunctions may cause a high level of developmental retardation and arrest of preimplantation embryos. It has been suggested that these mitochondrial changes may arise from excessive reactive oxygen species (ROS) that is closely associated with the oxidative energy production or calcium overload, which may trigger permeability transition pore opening and subsequent apoptosis. Therefore, mitochondria can be seen as signs for oocyte quality evaluation, and it is possible that the oocyte quality can be improved by enhancing the physical function of mitochondria. Here we reviewed recent advances in mitochondrial functions on oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertini, D.F., Combelles, C.M., Benecchi, E., Carabatsos, M.J., 2001. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction, 121(5): 647–653. [doi:10.1530/rep.0.1210647]

    Article  PubMed  CAS  Google Scholar 

  • Andreuccetti, P., Iodice, M., Prisco, M., Gualtieri, R., 1999. Intercellular bridges between granulosa cells and the oocyte in the elasmobranch Raya asterias. Anat. Rec., 255(2):180–187. [doi:10.1002/(SICI)1097-0185(19990601) 255:2〈180::AID-AR8〉3.3.CO;2-J]

    Article  PubMed  CAS  Google Scholar 

  • Anson, R.M., Croteau, D.L., Stierum, R.H., Filburn, C., Parsell, R., Bohr, V.A., 1998. Homogenous repair of singlet oxygen-induced DNA damage in differentially transcribed regions and strands of human mitochondrial DNA. Nucleic Acids Res., 26(2):662–668. [doi:10.1093/nar/26.2.662]

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, J.S., 2007. Mitochondrial medicine: pharmacological targeting of mitochondria in disease. Br. J. Pharmacol., 151(8):1154–1165. [doi:10.1038/sj.bjp.0707288]

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M.J., Lipp, P., Bootman, M.D., 2000. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol., 1:11–21. [doi:10.1038/35036035]

    Article  PubMed  CAS  Google Scholar 

  • Beutner, G., Rück, A., Riede, B., Brdiczka, D., 1998. Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim. Biophys. Acta, 1368:7–18. [doi:10.1016/S0005-2736(97)00175-2]

    Article  PubMed  CAS  Google Scholar 

  • Blondin, P., Sirard, M.A., 1995. Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes. Mol. Reprod. Dev., 41(1): 54–62. [doi:10.1002/mrd.1080410109]

    Article  PubMed  CAS  Google Scholar 

  • Bootman, M.D., Collins, T.J., Peppiatt, C.M., Prothero, L.S., MacKenzie, L., de Smet, P., Travers, M., Tovey, S.C., Seo, J.T., Berridge, M.J., Ciccolini, F., Lipp, P., 2001. Calcium signalling—an overview. Semin. Cell Dev. Biol., 12(1):3–10. [doi:10.1006/scdb.2000.0211]

    Article  PubMed  CAS  Google Scholar 

  • Bu, S., Xia, G., Tao, Y., Lei, L., Zhou, B., 2003. Dual effects of nitric oxide on meiotic maturation of mouse cumulus cell-enclosed oocytes in vitro. Mol. Cell. Endocrinol., 207(1–2):21–30. [doi:10.1016/S0303-7207(03)00213-2]

    Article  PubMed  CAS  Google Scholar 

  • Buchholz, J.N., Behringer, E.J., Pottorf, W.J., Pearce, W.J., Vanterpool, C.K., 2007. Age-dependent changes in Ca2+ homeostasis in peripheral neurones: implications for changes in function. Aging Cell, 6(3):285–296. [doi:10.1111/j.1474-9726.2007.00298.x]

    Article  PubMed  CAS  Google Scholar 

  • Chakraborti, T., Das, S., Mondal, M., Roychoudhury, S., Chakraborti, S., 1999. Mitochondria and calcium: from cell signalling to cell death. Cell. Signal., 11(2):77–85. [doi:10.1016/S0898-6568(98)00025-4]

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J., Scott, R., Alikani, M., Schimmel, T., Munné, S., Levron, J., Wu, L., Brenner, C., Warner, C., Willadsen, S., 1998. Ooplasmic transfer in mature human oocytes. Mol. Hum. Reprod., 4(3):269–280. [doi:10.1093/molehr/4.3.269]

    Article  PubMed  CAS  Google Scholar 

  • Cox, R.T., Spradling, A.C., 2003. A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis. Development, 130(8):1579–1590. [doi:10.1242/dev.00365]

    Article  PubMed  CAS  Google Scholar 

  • Cox, R.T., Spradling, A.C., 2006. Milton controls the early acquisition of mitochondria by Drosophila oocytes. Development, 133(17):3371–3377. [doi:10.1242/dev.02514]

    Article  PubMed  CAS  Google Scholar 

  • Crompton, M., 1999. The mitochondrial permeability transition pore and its role in cell death. Biochem. J., 341(2): 233–249. [doi:10.1042/0264-6021:3410233]

    Article  PubMed  CAS  Google Scholar 

  • Cummins, J.M., Wakayama, T., Yanagimachi, R., 1997. Fate of microinjected sperm components in the mouse oocyte and embryo. Zygote, 5(4):301–308. [doi:10.1017/S0967199400003889]

    Article  PubMed  CAS  Google Scholar 

  • Dubec, S.J., Aurora, R., Zassenhaus, H.P., 2008. Mitochondrial DNA mutations may contribute to aging via cell death caused by peptides that induce cytochrome-c release. Rejuvenation Res., 11(3):611–619. [doi:10.1089/rej.2007.0617]

    Article  PubMed  CAS  Google Scholar 

  • Duranthon, V., Renard, J.P., 2001. The developmental competence of mammalian oocytes: a convenient but biologically fuzzy concept. Theriogenology, 55(6):1277–1289. [doi:10.1016/S0093-691X(01)00482-4]

    Article  PubMed  CAS  Google Scholar 

  • Eichenlaub-Ritter, U., 1998. Genetics of oocyte ageing. Maturitas, 30(2):143–169. [doi:10.1016/S0378-5122(98) 00070-X]

    Article  PubMed  CAS  Google Scholar 

  • Eppig, J.J., 1996. Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod. Fertil. Dev., 8(4):485–489. [doi:10.1071/RD9960485]

    Article  PubMed  CAS  Google Scholar 

  • Fan, W.M., Kou, H., Shen, D.J., LeRoy, E.C., 1998. Identification of altered expression of ADP/ATP translocase during cellular senescence in vitro. Exp. Gerontol., 33(5):457–465. [doi:10.1016/S0531-5565(97)00093-4]

    Article  PubMed  CAS  Google Scholar 

  • Fulka, J.J., First, N.L., Moor, R.M., 1998. Nuclear and cytoplasmic determinants involved in the regulation of mammalian oocyte maturation. Mol. Hum. Reprod., 4(1):41–49. [doi:10.1093/molehr/4.1.41]

    Article  PubMed  CAS  Google Scholar 

  • Galat, A., Metcalfe, S.M., 1995. Peptidylproline cis/trans isomerases. Prog. Biophys. Mol. Biol., 63(1):67–118. [doi:10.1016/0079-6107(94)00009-X]

    Article  PubMed  CAS  Google Scholar 

  • Giacomello, M., Drago, I., Pizzo, P., Pozzan, T., 2007. Mitochondrial Ca2+ as a key regulator of cell life and death. Cell Death Differ., 14(7):1267–1274. [doi:10.1038/sj.cdd. 4402147]

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist, R.B., Lane, M., Thompson, J.G., 2008. Oocytesecreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update, 14(2):159–177. [doi:10.1093/humupd/dmm040]

    Article  PubMed  CAS  Google Scholar 

  • Golsteyn, R.M., Schultz, S.J., Bartek, J., Ziemiecki, A., Ried, T., Nigg, E.A., 1994. Cell cycle analysis and chromosomal localization of human Plk1, a putative homologue of the mitotic kinases Drosophila polo and Saccharomyces cerevisiae Cdc5. J. Cell Sci., 107 (Pt 6):1509–1517.

    PubMed  CAS  Google Scholar 

  • Grijalba, M.T., Vercesi, A.E., Schreier, S., 1999. Ca2+ induced increased lipid packing and domain formation in submitochondrial particles. A possible step in the mechanism of Ca2+ stimulated generation of reactive oxygen species by the respiratory chain. Biochemistry, 38(40):13279–13287. [doi:10.1021/bi9828674]

    Article  PubMed  CAS  Google Scholar 

  • Haghdoost, S., Czene, S., Näslund, I., Skog, S., Harms-Ringdahl, M., 2005. Extracellular 8-oxo-dG as a sensitive parameter for oxidative stress in vivo and in vitro. Free Radic. Res., 39(2):153–162. [doi:10.1080/10715760500043132]

    Article  PubMed  CAS  Google Scholar 

  • He, L., Lemasters, J.J., 2002. Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett., 512(1–3):1–7. [doi:10.1016/S0014-5793(01)03314-2]

    Article  PubMed  CAS  Google Scholar 

  • Hsieh, R.H., Au, H.K., Yeh, T.S., Chang, S.J., Cheng, Y.F., Tzeng, C.R., 2004. Decreased expression of mitochondrial genes in human unfertilized oocytes and arrested embryos. Fertil. Steril., 81(Suppl. 1):912–918. [doi:10.1016/j.fertnstert.2003.11.013]

    Article  PubMed  CAS  Google Scholar 

  • Hussein, T.S., Froiland, D.A., Amato, F., Thompson, J.G., Gilchrist, R.B., 2005. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J. Cell Sci., 118(22):5257–5268. [doi:10.1242/jcs.02644]

    Article  PubMed  CAS  Google Scholar 

  • Ichas, F., Laurence, S., Jouaville, L.S., 1997. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell, 89(7):1145–1153. [doi:10.1016/S0092-8674(00)80301-3]

    Article  PubMed  CAS  Google Scholar 

  • Kaneda, H., Hayashi, J.I., Takahama, S., Taya, C., Lindahl, K.F., Yonekawa, H., 1995. Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc. Natl. Acad. Sci. USA, 92(10):4542–4546. [doi:10.1073/pnas.92.10.4542]

    Article  PubMed  CAS  Google Scholar 

  • Kinnally, K.W., Antonsson, B., 2007. A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis, 12(5):857–868. [doi:10.1007/s10495-007-0722-z]

    Article  PubMed  CAS  Google Scholar 

  • Kong, L.H., Liu, Z., Li, H., Zhu, L., Chen, S.M., Chen, S.L., Xing, F.Q., 2004. Mitochondria transfer from self-granular cells to improve embryos’ quality. Zhonghua Fu Chan Ke Za Zhi, 39(2):105–107 (in Chinese).

    PubMed  Google Scholar 

  • Krisher, R.L., 2004. The effect of oocyte quality on development. J. Anim. Sci., 82(E-Suppl):E14–E23.

    PubMed  Google Scholar 

  • Kujoth, G.C., Hiona, A., Pugh, T.D., Someya, S., Panzer, K., Wohlgemuth, S.E., Hofer, T., Seo, A.Y., Sullivan, R., Jobling, W.A., et al., 2005. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science, 309(5733):481–484. [doi:10.1126/science.1112125]

    Article  PubMed  CAS  Google Scholar 

  • Lonergan, T., Bavister, B., Brenner, C., 2007. Mitochondria in stem cells. Mitochondrion, 7(5):289–296. [doi:10.1016/j.mito.2007.05.002]

    Article  PubMed  CAS  Google Scholar 

  • López-Lluch, G., Irusta, P.M., Navas, P., de Cabo, R., 2008. Mitochondrial biogenesis and healthy aging. Exp. Gerontol., 43(9):813–819. [doi:10.1016/j.exger.2008.06.014]

    Article  PubMed  CAS  Google Scholar 

  • Machaty, Z., Funahashi, H., Day, B.N., Prather, R.S., 1997. Developmental changes in the intracellular Ca2+ release mechanisms in porcine oocytes. Biol. Reprod., 56(4): 921–930. [doi:10.1095/biolreprod56.4.921]

    Article  PubMed  CAS  Google Scholar 

  • Malter, H.E., Cohen, J., 2002. Ooplasmic transfer: animal models assist human studies. Reprod. Biomed. Online, 5(1):26–35.

    PubMed  Google Scholar 

  • Mather, M., Hagai Rottenberg, H., 2000. Aging enhances the activation of the permeability transition pore in mitochondria. Biochem. Biophys. Res. Commun., 273(2): 603–608. [doi:10.1006/bbrc.2000.2994]

    Article  PubMed  CAS  Google Scholar 

  • Meißner, C., von Wurmb, N., Oehmichen, M., 1997. Detection of the age-dependent 4977 bp deletion of mitochondrial DNA. A pilot study. Int. J. Legal Med., 110(5):288–291. [doi:10.1007/s004140050089]

    Article  PubMed  Google Scholar 

  • Mermillod, P., Dalbiès-Tran, R., Uzbekova, S., Thélie, A., Traverso, J.M., Perreau, C., Papillier, P., Monget, P., 2008. Factors affecting oocyte quality: who is driving the follicle? Reprod. Domest. Anim., 43(Suppl. 2):393–400. [doi:10.1111/j.1439-0531.2008.01190.x]

    Article  PubMed  Google Scholar 

  • Munne, S., Sultan, K.M., Weier, H.U.G., Grifo, J.A., Cohen, J., Rosenwaks, Z., 1995. Assessment of numerical abnormalities of X, Y, 18 and 16 chromosomes in preimplantation of human embryos prior to transfer. Am. J. Obstet. Gynecol., 172(4):1191–1201. [doi:10.1016/0002-9378(95)91479-X]

    Article  PubMed  CAS  Google Scholar 

  • Nagai, S., Mabuchi, T., Hirata, S., Shoda, T., Kasai, T., Yokota, S., Shitara, H., Yonekawa, H., Hoshi, K., 2006. Correlation of abnormal mitochondrial distribution in mouse oocytes with reduced developmental competence. Tohoku J. Exp. Med., 210(2):137–144. [doi:10.1620/tjem.210.137]

    Article  PubMed  CAS  Google Scholar 

  • Nishi, Y., Takeshita, T., Sato, K., Araki, T., 2003. Change of the mitochondrial distribution in mouse ooplasm during in vitro maturation. J. Nippon Med. Sch., 70(5):408–415. [doi:10.1272/jnms.70.408]

    Article  PubMed  Google Scholar 

  • Ott, M., Gogvadze, V., Orrenius, S., Zhivotovsky, B., 2007. Mitochondria, oxidative stress and cell death. Apoptosis, 12(5):913–922. [doi:10.1007/s10495-007-0756-2]

    Article  PubMed  CAS  Google Scholar 

  • Ottolenghi, C., Uda, M., Hamatani, T., Crisponi, L., Garcia, J.E., Ko, M., Pilia, G., Sforza, C., Schlessinger, D., Forabosco, A., 2004. Aging of oocyte, ovary, and human reproduction. Ann. N. Y. Acad. Sci., 1034(1):117–131. [doi:10.1196/annals.1335.015]

    Article  PubMed  CAS  Google Scholar 

  • Pahlavan, G., Polanski, Z., Kalab, P., Golsteyn, R., Nigg, E.A., Maro, B., 2000. Characterization of polo-like kinase 1 during meiotic maturation of the mouse oocyte. Dev. Biol., 220(2):392–400. [doi:10.1006/dbio.2000.9656]

    Article  PubMed  CAS  Google Scholar 

  • Pastorino, J.G., Shulga, N., Hoek, J.B., 2002. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J. Biol. Chem., 277(9): 7610–7618. [doi:10.1074/jbc.M109950200]

    Article  PubMed  CAS  Google Scholar 

  • Pinkert, C.A., Irwin, M.H., Johnson, L.W., Moffatt, R.J., 1997. Mitochondria transfer into mouse ova by microinjection. Transgenic Research, 6(6):379–383. [doi:10.1023/A:1018431316831]

    Article  PubMed  CAS  Google Scholar 

  • Qiao, T.W., Liu, N., Miao, D.Q., Zhang, X., Han, D., Ge, L., Tan, J.H., 2008. Cumulus cells accelerate aging of mouse oocytes by secreting a soluble factor(s). Mol. Reprod. Dev., 75(3):521–528. [doi:10.1002/mrd.20779]

    Article  PubMed  CAS  Google Scholar 

  • Reynier, P., May-Panloup, P., Chrétien, M.F., Morgan, C.J., Jean, M., Savagner, F., Barrière, P., Malthièry, Y., 2001. Mitochondrial DNA content affects the fertilizability of human oocytes. Mol. Hum. Reprod., 7(5):425–429. [doi:10.1093/molehr/7.5.425]

    Article  PubMed  CAS  Google Scholar 

  • Robertson, J.A., 1998. Oocyte cytoplasm transfers and the ethics of germ-line intervention. J. Law Med. Ethics, 26(3):211–220, 179. [doi:10.1111/j.1748-720X.1998.tb01422.x]

    Article  PubMed  CAS  Google Scholar 

  • Rottenberg, H., Shaolong, W., 1997. Mitochondrial dysfunction in lymphocytes from old mice: enhanced activation of the permeability transition. Biochem. Biophys. Res. Commun., 240(1):68–74. [doi:10.1006/bbrc.1997.7605]

    Article  PubMed  CAS  Google Scholar 

  • Sharov, A.A., Falco, G., Piao, Y., Poosala, S., Becker, K.G., Zonderman, A.B., Longo, D.L., Schlessinger, D., Ko, M.S., 2008. Effects of aging and calorie restriction on the global gene expression profiles of mouse testis and ovary. BMC Biol., 6(1):24. [doi:10.1186/1741-7007-6-24]

    Article  PubMed  CAS  Google Scholar 

  • Smaili, S.S., Hsu, Y.T., Youle, R.J., Russell, J.T., 2000. Mitochondria in Ca2+ signaling and apoptosis. J. Bioenerg. Biomembr., 32(1):35–46. [doi:10.1023/A:1005508311495]

    Article  PubMed  CAS  Google Scholar 

  • Spikings, E.C., Alderson, J., St. John, J.C., 2007. Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol. Reprod., 76(2):327–335. [doi:10.1095/biolreprod.106.054536]

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, A., Masuda, A., Sun, M., Centonze, V.E., Herman, B., 2004. Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). Brain Res. Bull., 62(6):497–504. [doi:10.1016/j.brainresbull. 2003.07.009]

    Article  PubMed  CAS  Google Scholar 

  • Tarín, J.J., 1996. Potential effects of age-associated oxidative stress on mammalian oocytes/embryos. Mol. Hum. Reprod., 2(10):717–724. [doi:10.1093/molehr/2.10.717]

    Article  PubMed  Google Scholar 

  • Thouas, G.A., Trounson, A.O., Wolvetang, E.J., Jones, G.M., 2004. Mitochondrial dysfunction in mouse oocytes results in preimplantation embryo arrest in vitro. Biol. Reprod., 71(6):1936–1942. [doi:10.1095/biolreprod.104.033589]

    Article  PubMed  CAS  Google Scholar 

  • Torner, H., Brüssow, K.P., Alm, H., Ratky, J., Pöhland, R., Tuchscherer, A., Kanitz, W., 2004. Mitochondrial aggregation patterns and activity in porcine oocytes and apoptosis in surrounding cumulus cells depends on the stage of pre-ovulatory maturation. Theriogenology, 61(9):1675–1689. [doi:10.1016/j.theriogenology.2003.09.013]

    Article  PubMed  CAS  Google Scholar 

  • Trifunovic, A., Hansson, A., Wredenberg, A., Rovio, A.T., Dufour, E., Khvorostov, I., Spelbrink, J.N., Wibom, R., Jacobs, H.T., Larsson, N.G., 2005. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc. Natl. Acad. Sci. USA, 102(50):17993–17998. [doi:10.1073/pnas.0508886102]

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto, Y., Shimizu, S., 2007. Role of the mitochondrial membrane permeability transition in cell death. Apoptosis, 12(5):835–840. [doi:10.1007/s10495-006-0525-7]

    Article  PubMed  CAS  Google Scholar 

  • van Blerkom, J., 1991. Microtubule mediation of cytoplasmic and nuclear maturation during the early stages of resumed meiosis in cultured mouse oocyte. Proc. Natl. Acad. Sci. USA, 88(11):5031–5035. [doi:10.1073/pnas.88.11.5031]

    Article  PubMed  Google Scholar 

  • van Blerkom, J., 2008. Mitochondria as regulatory forces in oocytes, preimplantation embryos and stem cells. Reprod. Biomed. Online, 16:553–569.

    Article  PubMed  Google Scholar 

  • van Blerkom, J., Davis, P., 2006. High-polarized (Delta Psi m(HIGH)) mitochondria are spatially polarized in human oocytes and early embryos in stable subplasmalemmal domains: developmental significance and the concept of vanguard mitochondria. Reprod. Biomed. Online, 13(2): 246–254.

    PubMed  Google Scholar 

  • van Blerkom, J., Davis, P., 2007. Mitochondrial signaling and fertilization. Mol. Hum. Reprod., 13(11):759–770. [doi:10.1093/molehr/gam068]

    Article  PubMed  CAS  Google Scholar 

  • van Blerkom, J., Davis, P., Alexander, S., 2003. Inner mitochondrial membrane potential (DeltaPsim), cytoplasmic ATP content and free Ca2+ levels in metaphase II mouse oocytes. Hum. Reprod., 18(11):2429–2440. [doi:10.1093/humrep/deg466]

    Article  PubMed  CAS  Google Scholar 

  • van Blerkom, J., Cox, H., Davis, P., 2006. Regulatory roles for mitochondria in the peri-implantation mouse blastocyst: possible origins and developmental significance of differential Δψ m. Reproduction, 131(5):961–976 [doi:10.1530/rep.1.00458]

    Article  PubMed  CAS  Google Scholar 

  • van Blerkom, J., Davis, P., Thalhammer, V., 2008. Regulation of mitochondrial polarity in mouse and human oocytes: the influence of cumulus derived nitric oxide. Mol. Hum. Reprod., 14(8):431–444. [doi:10.1093/molehr/gan037]

    Article  PubMed  CAS  Google Scholar 

  • Vermulst, M., Wanagat, J., Kujoth, G.C., Bielas, J.H., Rabinovitch, P.S., Prolla, T.A., Loeb, L.A., 2008. DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat. Genet., 40(4):392–394. [doi:10.1038/ng.95]

    Article  PubMed  CAS  Google Scholar 

  • Vieira, H.L., Haouzi, D., El Hamel, C., Jacotot, E., Belzacq, A.S., Brenner, C., Kroemer, G., 2000. Permeabilization of the mitochondrial inner membrane during apoptosis: impact of the adenine nucleotide translocator. Cell Death Differ., 7(12):1146–1154. [doi:10.1038/sj.cdd.4400778]

    Article  PubMed  CAS  Google Scholar 

  • Voznesenskaya, T.Y., Blashkiv, T.V., 2005. Estradiol-dependent effect of nitric oxide on meiotic maturation of mouse oocytes. Bull. Exp. Biol. Med., 140(4):378–380. [doi:10.1007/s10517-005-0494-9]

    Article  PubMed  CAS  Google Scholar 

  • Vyssokikh, M.Y., Brdiczka, D., 2003. The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis. Acta Biochim. Pol., 50(2):389–404.

    PubMed  CAS  Google Scholar 

  • Wang, J., Lü, Y.Y., 2009. Mitochondrial DNA 4977-bp deletion correlated with reactive oxygen species production and manganese superoxide dismutase expression in gastric tumor cells. Chin. Med. J. (Engl.), 122(4):431–436.

    CAS  Google Scholar 

  • Whitaker, M., 2008. Calcium signalling in early embryos. Philosophical Transactions of The Royal Society B Biological Sciences, 363(1495):1401–1418. [doi:10.1098/rstb.2008.2259]

    Article  CAS  Google Scholar 

  • Wilding, M., Dale, B., Marino, M., di Matteo, L., Alviggi, C., Pisaturo, M.L., Lombardi, L., de Placido, G., 2001. Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum. Reprod., 16(5):909–917. [doi:10.1093/humrep/16.5.909]

    Article  PubMed  CAS  Google Scholar 

  • Wu, J., Zhang, L., Wang, X., 2000. Maturation and apoptosis of human oocytes in vitro are age-related. Fertil. Steril., 74(6):1137–1141. [doi:10.1016/S0015-0282(00)01597-1]

    Article  PubMed  CAS  Google Scholar 

  • Yesodi, V., Yaron, Y., Lessing, J.B., Amit, A., Ben-Yosef, D., 2002. The mitochondrial DNA mutation (ΔmtDNA5286) in human oocytes: correlation with age and IVF outcome. J. Assist. Reprod. Genet., 19(2):60–66. [doi:10.1023/A:1014439529813]

    Article  PubMed  Google Scholar 

  • Yi, Y.C., Chen, M.J., Ho, J.Y., Guu, H.F., Ho, E.S., 2007. Mitochondria transfer can enhance the murine embryo development. J. Assist. Reprod. Genet., 24(10):445–449. [doi:10.1007/s10815-007-9161-6]

    Article  PubMed  Google Scholar 

  • Yin, H., Baart, E., Betzendahl, I., Eichenlaub-Ritter, U., 1998. Diazepam induces meiotic delay, aneuploidy and predivision of homologues and chromatids in mammalian oocytes. Mutagenesis, 13(6):567–580. [doi:10.1093/mutage/13.6.567]

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Wu, X.Q., Lu, S., Guo, Y.L., Ma, X., 2006. Deficit of mitochondria-derived ATP during oxidative stress impairs mouse MII oocyte spindles. Cell Res., 16(10): 841–850. [doi:10.1038/sj.cr.7310095]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-ming Xu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 30772345), the Research Program of the Science and Technology Bureau of Zhejiang Province (No. 2006C33016), the Natural Science Foundation of Zhejiang Province (No. Y204202), and the Chinese Medicine Research Program of Zhejiang Province (No. 2007CA071), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Ly., Wang, Dh., Zou, Xy. et al. Mitochondrial functions on oocytes and preimplantation embryos. J. Zhejiang Univ. Sci. B 10, 483–492 (2009). https://doi.org/10.1631/jzus.B0820379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0820379

Key words

CLC number

Navigation