Advertisement

Journal of Zhejiang University SCIENCE B

, Volume 10, Issue 1, pp 14–21 | Cite as

Chlorella vulgaris triggers apoptosis in hepatocarcinogenesis-induced rats

  • Emey Suhana Mohd Azamai
  • Suhaniza Sulaiman
  • Shafina Hanim Mohd Habib
  • Mee Lee Looi
  • Srijit Das
  • Nor Aini Abdul Hamid
  • Wan Zurinah Wan Ngah
  • Yasmin Anum Mohd Yusof
Article

Abstract

Chlorella vulgaris (CV) has been reported to have antioxidant and anticancer properties. We evaluated the effect of CV on apoptotic regulator protein expression in liver cancer-induced rats. Male Wistar rats (200∼250 g) were divided into eight groups: control group (normal diet), CDE group (choline deficient diet supplemented with ethionine in drinking water to induce hepatocarcinogenesis), CV groups with three different doses of CV (50, 150, and 300 mg/kg body weight), and CDE groups treated with different doses of CV (50, 150, and 300 mg/kg body weight). Rats were sacrificed at various weeks and liver tissues were embedded in paraffin blocks for immunohistochemistry studies. CV, at increasing doses, decreased the expression of anti-apoptotic protein, Bcl-2, but increased the expression of pro-apoptotic protein, caspase 8, in CDE rats, which was correlated with decreased hepatoctyes proliferation and increased apoptosis as determined by bromodeoxy-uridine (BrdU) labeling and terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) assay, respectively. Our study shows that CV has definite chemopreventive effect by inducing apoptosis via decreasing the expression of Bcl-2 and increasing the expression of caspase 8 in hepatocarcinogenesis-induced rats.

Key words

Chlorella vulgaris (CV) Apoptosis Bcl-2 Caspase 8 Liver cancer 

CLC number

R73 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhurst, B., Croager, E.J., Farley-Roche, C.A., Ong, J.K., Dumble, M.L., Knight, B., Yeoh, G.C., 2001. A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver. Hepatology, 34(3):519–522. [doi:10.1053/jhep.2001.26751]PubMedCrossRefGoogle Scholar
  2. Coultas, L., Strasser, A., 2003. The role of the Bcl-2 protein family in cancer. Semin. Cancer. Biol., 13(2):115–123. [doi:10.1016/S1044-579X(02)00129-3]PubMedCrossRefGoogle Scholar
  3. Crawford, R.A., Caldwell, C., Iles, R.K., Shepherd, J.H., Chard, T., 1998. Prognostic significance of the Bcl-2 apoptotic family of proteins in primary and recurrent cervical cancer. Br. J. Cancer, 78(2):210–214.PubMedCrossRefGoogle Scholar
  4. Davies, R.A., Knight, B., Tian, Y.W., Yeoh, G.C., Olynyk, J.K., 2006. Hepatic oval cell response to the cholinedeficient, ethionine supplemented model of murine liver injury is attenuated by the administration of a cyclooxygenase 2 inhibitor. Carcinogenesis, 27(8):1607–1616. [doi:10.1093/carcin/bgi365]PubMedCrossRefGoogle Scholar
  5. Hanson, C.J., Bootman, M.D., Distelhorst, C.W., Maraldi, T., Roderick, H.L., 2008. The cellular concentration of Bcl-2 determines its pro- or anti-apoptotic effect. Cell Calcium., 44(3):243–258. [doi:10.1016/j.ceca.2007.11.014]PubMedCrossRefGoogle Scholar
  6. Haperin, S.A., Smith, B., Nolan, C., Shay, J., Kralovec, J., 2003. Safety and immunoenhancing effect of a Chlorelladerived dietary supplement in healthy adults undergoing influenza vaccination: randomized, double-blind, placebocontrolled trial. CMAJ, 162(2):111–117.Google Scholar
  7. Hasegawa, T., Noda, K., Kumamoto, S., Ando, Y., Yamada, A., Yoshikai, Y., 2000. Chlorella vulgaris culture supernatant (CVS) reduces psychological stress-induced apoptosis in thymocytes of mice. Int. J. Immunopharmacol., 22(11):877–885. [doi:10.1016/S0192-0561(00)00049-7]PubMedCrossRefGoogle Scholar
  8. Hopkins-Donaldson, S., Bodmer, J.L., Bourloud, K.B., Brognara, C.B., Tschopp, J., Gross, N., 2000. Loss of caspase-8 expression in neuroblastoma is related to malignancy and resistance to TRAIL-induced apoptosis. Med. Pediatr. Oncol., 35(6):608–611. [doi:10.1002/1096-911X(20001201)35:6〈608::AID-MPO25〉3.0.CO;2-U]PubMedCrossRefGoogle Scholar
  9. Kew, M.C., 2002. Epidemiology of hepatocellular carcinoma. Toxicology, 181–182:35–38. [doi:10.1016/S0300-483X(02)00251-2]PubMedCrossRefGoogle Scholar
  10. Lampe, J.W., 2003. Spicing up a vegetarian diet: chemopreventive effects of phytochemicals. Am. J. Clin. Nutr., 78(Suppl. 3):579S–583S.PubMedGoogle Scholar
  11. Lowes, K.N., Croager, E.J., Olynyk, J.K., Abraham, L.J., Yeoh, G.C., 2003. Oval cell-mediated liver regeneration: role of cytokines and growth factors. J. Gastroenterol. Hepatol., 18(1):4–12. [doi:10.1046/j.1440-1746.2003.02906.x]PubMedCrossRefGoogle Scholar
  12. Md Saad, S., Mohd Yusof, Y.A., Wan Ngah, W.Z., 2006. Comparison between locally produced Chlorella vulgaris and Chlorella vulgaris from Japan on proliferation and apoptosis of liver cancer cell line, HepG2. Malaysian J. Biochem. & Molec. Biol., 13(1):32–36.Google Scholar
  13. Miyao, M., Shinoda, H., Takahashi, S., 2006. Caspase-3, caspase-8 and nuclear factor-kappaB expression in human cholesteatoma. Otology & Neurotology, 27(1):8–13. [doi:10.1097/01.mao.0000180482.34545.b8]CrossRefGoogle Scholar
  14. National Cancer Registry of Malaysia, 2003. Cancer Incidence of Malaysia 2002. Available at http://www.crc.gov.my
  15. Okuda, K., 2000. Hepatocellular carcinoma. J. Hepatol., 32(Suppl. 1):225–237. [doi:10.1016/S0168-8278(00)80428-6]PubMedCrossRefGoogle Scholar
  16. Park, J.W., 2005. Hepatocellular carcinoma in Korea: introduction and overview. Korean J. Gastroenterol., 45(4):217–226.PubMedGoogle Scholar
  17. Sano, T., Tanaka, Y., 1987. Effect of dried, powdered Chlorella vulgaris on experimental atherosclerosis and alimentary hypercholestrolemia in cholesterol-fed rabbits. Artery, 14(2):76–84.PubMedGoogle Scholar
  18. Schafer, D.F., Sorrell, M.F., 1999. Hepatocellular carcinoma. Lancet, 353(9160):1253–1257. [doi:10.1016/S0140-6736(98)09148-X]PubMedCrossRefGoogle Scholar
  19. Sulaiman, S., Wan Ngah, W.Z., Shamaan, N.A., Mohd Yusof, Y.A., 2006. Chemopreventive effect of Chlorella vulgaris on liver cancer induced rats. Int. J. Cancer Res., 2(3):234–241.CrossRefGoogle Scholar
  20. Surh, Y.J., 1999. Molecular mechanisms of chemopreventive effects of selected dietary and medical phenolic substances. Mutation Res., 428(1-2):305–327.PubMedGoogle Scholar
  21. Surh, Y.J., 2002. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Food Chem. Toxicol., 40(8):1091–1097. [doi:10.1016/S0278-6915(02)00037-6]PubMedCrossRefGoogle Scholar
  22. Tee, L.B.G., Kirilak, Y., Huang, W.H., Morgan, R.H., Yeoh, G.C., 1994. Differentiation of oval cells into duct-like cells in preneoplastic liver of rats placed on a choline-deficient diet supplemented with ethionine. Carcinogenesis, 15(12):2747–2756. [doi:10.1093/carcin/15.12.2747]PubMedCrossRefGoogle Scholar
  23. Yuspa, S.H., Poirier, M.C., 1988. Chemical carcinogenesis: from animal models to molecular models in one decade. Adv. Cancer Res., 50:25–68. [doi:10.1016/S0065-230X(08)60434-0]PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Emey Suhana Mohd Azamai
    • 1
  • Suhaniza Sulaiman
    • 1
  • Shafina Hanim Mohd Habib
    • 1
  • Mee Lee Looi
    • 1
  • Srijit Das
    • 2
  • Nor Aini Abdul Hamid
    • 1
  • Wan Zurinah Wan Ngah
    • 1
  • Yasmin Anum Mohd Yusof
    • 1
  1. 1.Department of BiochemistryUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
  2. 2.Department of Anatomy, Faculty of Medicine, UKM Medical CenterUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia

Personalised recommendations