Skip to main content
Log in

Availability and toxicity of Fe(II) and Fe(III) in Caco-2 cells

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

The objective of the present study was to compare the toxicity and availability of Fe(II) and Fe(III) to Caco-2 cells. Cellular damage was studied by measuring cell proliferation and lactate dehydrogenase (LDH) release. The activities of two major antioxidative enzymes [superoxide dismutase (SOD) and glutathione peroxidase (GPx)] and differentiation marker (alkaline phosphatase) were determined after the cells were exposed to different levels of iron salts. The cellular iron concentration was investigated to evaluate iron bioavailability. The results show that iron uptake of the cells treated with Fe(II) is significantly higher than that of the cells treated with Fe(III) (P<0.05). Fe(II) at a concentration >1.5 mmol/L was found to be more effective in reducing cellular viability than Fe(III). LDH release investigation suggests that Fe(II) can reduce stability of the cell membrane. The activities of SOD and GPx of the cells treated with Fe(II) were higher than those of the cells treated with Fe(III), although both of them increased with raising iron supply levels. The results indicate that both Fe(II) and Fe(III) could reduce the cellular antioxidase gene expression at high levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, S.S., Baker, R.D.Jr., 1992. Antioxidant enzymes in the differentiated Caco-2 cell line. In Vitro Cellular & Developmental Biology-Animal, 28(9–10):643–647. [doi:10.1007/BF02631040]

    Article  Google Scholar 

  • Cai, L., Tsiapalis, G., Cherian, M.G., 1998. Protective role of zinc-metallothionein on DNA damage in vitro by ferric nitrilotriacetate (Fe-NTA) and ferric salts. Chemico-Biological Interactions, 115(2):141–151. [doi:10.1016/S0009-2797(98)00069-6]

    Article  PubMed  CAS  Google Scholar 

  • Chamnongpol, S., Dodson, W., Cromie, M.J., Harris, Z.L., Groisman, E.A., 2002. Fe(III)-mediated cellular toxicity. Molecular Microbiology, 45(3):711–719. [doi:10.1046/j.1365-2958.2002.03041.x]

    Article  PubMed  CAS  Google Scholar 

  • Gan, L.L., Dhiren, R.T., 1997. Applications of the Caco-2 model in the design and development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal epithelium. Advanced Drug Delivery Reviews, 23(1–3):77–81. [doi:10.1016/S0169-409X(96)00427-9]

    Article  CAS  Google Scholar 

  • García-Alfonso, C., Lopez-barea, J., Sanz, P., Repetto, G., Repetto, M., 1996. Changes in antioxidative activities induced by Fe(II) and Fe(III) in cultured vero cells. Archives of Environmental Contamination and Toxicology, 30(4):431–436. [doi:10.1007/BF00213392]

    Article  PubMed  Google Scholar 

  • Glahn, R.P., Wien, E.M., van Campen, D.R., Miller, D.D., 1996. Caco-2 cell iron uptake from meat and casein digests parallels in vivo studies: use of a novel in vitro method for rapid estimation of iron bioavailability. Journal of Nutrition, 126(1):332–339.

    PubMed  CAS  Google Scholar 

  • Glahn, R.P., Lee, O.A., Yeung, A., Goldman, M.I., Miller, D.D., 1998. Caco-2 cell ferritin formation predicts non-radiolabeled food iron availability in an in vitro digestion/Caco-2 cell culture model. Journal of Nutrition, 128(9):257–264.

    PubMed  CAS  Google Scholar 

  • Glahn, R.P., Cheng, Z.Q., Welch, M.R., 2002. Comparison of iron bioavailability from 15 rice genotypes: studies using an in vitro digestion/Caco-2 cell culture model. Journal of Agricultural and Food Chemistry, 50(12):3586–3591. [doi:10.1021/jf0116496]

    Article  PubMed  CAS  Google Scholar 

  • Kloots, W., Op den Kamp, D., Abrahamse, L., 2004. In vitro iron availability from iron-fortified whole-grain wheat flour. Journal of Agricultural and Food Chemistry, 52(26):8132–8136. [doi:10.1021/jf040010+]

    Article  PubMed  CAS  Google Scholar 

  • Kuratko, C.N., 1998. Decrease of manganese superoxide dismutase activity in rats fed high levels of iron during colon carcinogenesis. Food and Chemical Toxicology, 36(9–10):819–824. [doi:10.1016/S0278-6915(98)00029-5]

    Article  PubMed  CAS  Google Scholar 

  • Kuratko, C.N., 1999. Iron increases manganese superoxide dismutase activity in intestinal epithelial cells. Toxicology Letters, 104(1–2):151–158. [doi:10.1016/S0378-4274(98)00359-2]

    Article  PubMed  CAS  Google Scholar 

  • Mccord, J.M., 1996. Effects of positive iron status at a cellular level. Nutrition Reviews, 54(3):85–88.

    Article  PubMed  CAS  Google Scholar 

  • Núñez, M.T., Tapia, V., Toyokuni, S., Okada, S., 2001. Iron-induced oxidative damage in colon carcinoma (Caco-2) cells. Free Radical Research, 34(1):57–68. [doi:10.1080/10715760100300061]

    Article  PubMed  Google Scholar 

  • Okada, T., Narai, A., Matsunaga, S., 2000. Assessment of the marine toxins by monitoring the integrity of human intestinal Caco-2 cell monolayers. Toxicology in Vitro, 14(3):219–226. [doi:10.1016/S0887-2333(00)00014-X]

    Article  PubMed  CAS  Google Scholar 

  • Peng, Z.F., Lan, L.X., Zhao, F., Li, J., Tan, Q., Yin, H.W., Zeng, H.H., 2008. A novel thioredoxin inhibitor inhibits cell growth and induces apoptosis in HL-60 and K562 cells. Journal of Zhejiang University SCIENCE B, 9(1): 16–21. [doi:10.1631/jzus.B071605]

    Article  PubMed  CAS  Google Scholar 

  • Rossi, A., Poverini, R., Lullo, G.D., Modesti, A., Modica, A., Scarino, M.L., 1996. Heavy metal toxicity following apical and basolateral exposure in the human intestinal cell line Caco-2. Toxicology in Vitro, 10(1):27–36. [doi:10.1016/0887-2333(95)00097-6]

    Article  CAS  PubMed  Google Scholar 

  • Srigiridhar, K., Nair, K.M., Subramanian, R., Singotamu, L., 2001. Oral repletion of iron induces free radical mediated alterations in the gastrointestinal tract of rat. Molecular and Cellular Biochemistry, 219(1–2):91–98. [doi:10.1023/A:1011023111048]

    Article  PubMed  CAS  Google Scholar 

  • Walgren, R.A., Karnaky, K.J., Lindenmayer, G.E., 2000. Efflux of dietary flavonoid quercetin 4′-β-glucoside across human intestinal Caco-2 cell monolayers by apical multidrug resistance-associated protein-2. Journal of Pharmacology and Experimental Therapeutics, 294(3): 830–835.

    PubMed  CAS  Google Scholar 

  • Watzl, B., Abrahamse, S.L., Lishaut, S.T.V., Neudecker, C., Hänsch, G.M., Rechkemmer, G., Pool-Zobel, B.L., 1999. Enhancement of ovalbumin-induced antibody production and mucosal mast cell response by mercury. Food and Chemical Toxicology, 37(6):627–637. [doi:10.1016/S0278-6915(99)00035-6]

    Article  PubMed  CAS  Google Scholar 

  • Xing, C.H., Zhu, M.H., Cai, M.Z., Liu, P., Xu, G.D., Wu, S.H., 2008. Developmental characteristics and response to iron toxicity of root border cells in rice seeding. Journal of Zhejiang University SCIENCE B, 9(3):261–264. [doi:10.1631/jzus.B0710627]

    Article  PubMed  CAS  Google Scholar 

  • Zager, R.A., Schimpf, B.A., Bredl, C.R., Gmur, D.J., 1993. Inorganic iron effects on in vitro hypoxic proximal renal tubular cell injury. Journal of Clinical Inestigation, 91(2): 702–708. [doi:10.1172/JCI116251]

    Article  CAS  Google Scholar 

  • Zhang, Z.R., 2004. Cultural Cytology and Cell Cultural Technology. Shanghai Scientific and Technical Publishers, Shanghai, p.427–432 (in Chinese).

    Google Scholar 

  • Zhao, B.L., 1998. Free Oxygenic Radicals and Savageness Antioxidant. Publishing Company of Science, Beijing, p.81–85 (in Chinese).

    Google Scholar 

  • Zödl, B., Zeiner, M., Sargazi, M., Roberts, N.B., Marktl, W., Steffan, I., Cem Ekmekcioglu, C., 2003. Toxic and biochemical effects of zinc in Caco-2 cells. Journal of Inorganic Biochemistry, 97(4):324–330. [doi:10.1016/S0162-0134(03)00312-X]

    Article  PubMed  CAS  Google Scholar 

  • Zödl, B., Sargazi, M., Zeiner, M., Roberts, N.B., Steffan, I., Marktl, W., Ekmekcioglu, C., 2004. Toxicological effects of iron on intestinal cells. Cell Biochemistry and Function, 22(3):143–148. [doi:10.1002/cbf.1065]

    Article  PubMed  Google Scholar 

  • Zödl, B., Zeiner, M., Paukovits, P., Steffan, I., Marktl, W., Ekmekcioglu, C., 2005. Iron uptake and toxicity in Caco-2 cells. Microchemical Journal, 79(1–2):393–397. [doi:10.1016/j.microc.2004.10.019]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-e Yang.

Additional information

Project supported by the International Cooperative Project from the Ministry of Science and Technology of China (No. 2006DFA31030), the Bureau of Science and Technology of Zhejiang Province (No. 2006C32019) and HarvestPlus-China (No. 8022), and the Program for Changjiang Scholars and Innovative Research Team in University of China (No. IRT0536)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Wl., Feng, Y., Li, Xl. et al. Availability and toxicity of Fe(II) and Fe(III) in Caco-2 cells. J. Zhejiang Univ. Sci. B 9, 707–712 (2008). https://doi.org/10.1631/jzus.B0820023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0820023

Key words

CLC number

Navigation