Journal of Zhejiang University SCIENCE B

, Volume 9, Issue 3, pp 165–191 | Cite as

Phytate: impact on environment and human nutrition. A challenge for molecular breeding

  • Lisbeth Bohn
  • Anne S. Meyer
  • Søren. K. RasmussenEmail author


Phytic acid (PA) is the primary storage compound of phosphorus in seeds accounting for up to 80% of the total seed phosphorus and contributing as much as 1.5% to the seed dry weight. The negatively charged phosphate in PA strongly binds to metallic cations of Ca, Fe, K, Mg, Mn and Zn making them insoluble and thus unavailable as nutritional factors. Phytate mainly accumulates in protein storage vacuoles as globoids, predominantly located in the aleurone layer (wheat, barley and rice) or in the embryo (maize). During germination, phytate is hydrolysed by endogenous phytase(s) and other phosphatases to release phosphate, inositol and micronutrients to support the emerging seedling. PA and its derivatives are also implicated in RNA export, DNA repair, signalling, endocytosis and cell vesicular trafficking. Our recent studies on purification of phytate globoids, their mineral composition and dephytinization by wheat phytase will be discussed. Biochemical data for purified and characterized phytases isolated from more than 23 plant species are presented, the dephosphorylation pathways of phytic acid by different classes of phytases are compared, and the application of phytase in food and feed is discussed.

Key words

Phytase Phytic acid Iron bioavailability Antinutritional factor Purple acid phosphatase Cereal 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C.L., Hambidge, M., Raboy, V., Dorsch, J.A., Sian, L., Westcott, J.L., Krebs, N.F., 2002. Zinc absorption from a low-phytic acid maize. American Journal of Clinical Nutrition, 76(3):556–559.PubMedGoogle Scholar
  2. Agostini, J.D., Ida, E.I., 2006. Partially characterization and application of phytase extracted from germinated sunflower seeds. Pesquisa Agropecuaria Brasileira, 41(6):1041–1047.Google Scholar
  3. Agranoff, B.W., 1978. Textbook errors—Cyclitol confusion. Trends in Biochemical Sciences, 3(12):N283–N285.Google Scholar
  4. Al-Wahsh, I.A., Horner, H.T., Palmer, R.G., Reddy, M.B., Massey, L.K., 2005. Oxalate and phytate of soy foods. Journal of Agricultural and Food Chemistry, 53(14):5670–5674. [doi:10.1021/jf0506378]PubMedCrossRefGoogle Scholar
  5. Anderson, G.J., Frazer, D.M., Mckie, A.T., Vulpe, C.D., Smith, A., 2005. Mechanisms of haem and non-haem iron absorption: Lessons from inherited disorders of iron metabolism. Biometals, 18(4):339–348. [doi:10.1007/s10534-005-3708-8]PubMedCrossRefGoogle Scholar
  6. Anderson, R.L., Wolf, W.J., 1995. Compositional changes in trypsin-inhibitors, phytic acid, saponins and isoflavones related to soybean processing. Journal of Nutrition, 125(3):S581–S588.Google Scholar
  7. Andlid, T.A., Veide, J., Sandberg, A.S., 2004. Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae. International Journal of Food Microbiology, 97(2):157–169. [doi:10.1016/j.ijfoodmicro.2004.04.016]PubMedCrossRefGoogle Scholar
  8. Andrews, N.C., 1999. The iron transporter DMT1. International Journal of Biochemistry and Cell Biology, 31(10):991–994. [doi:10.1016/S1357-2725(99)00065-5]PubMedCrossRefGoogle Scholar
  9. Andrews, N.C., Schmidt, P.J., 2007. Iron homeostasis. Annual Review of Physiology, 69(1):69–85.PubMedCrossRefGoogle Scholar
  10. Andriotis, V.M.E., Ross, J.D., 2003. Isolation and characterization of phytase from dormant Corylus avellana seeds. Phytochemistry, 64(3):689–699. [doi:10.1016/S0031-9422(03)00415-1]PubMedCrossRefGoogle Scholar
  11. Angel, R., Tamim, N.M., Applegate, T.J., Dhandu, A.S., Ellestad, L.E., 2002. Phytic acid chemistry: Influence on phytin-phosphorus availability and phytase efficacy. Journal of Applied Poultry Research, 11(4):471–480.Google Scholar
  12. Annibale, B., Capurso, G., Martino, G., Grossi, C., le Fave, G., 2000. Iron deficiency anaemia and Helicobacter pylori infection. International Journal of Antimicrobial Agents, 16(4):515–519. [doi:10.1016/S0924-8579(00)00288-0]PubMedCrossRefGoogle Scholar
  13. Antoine, C., Lullien-Pellerin, V., Abecassis, J., Rouau, X., 2004. Effect of wheat bran ball-milling on fragmentation and marker extractability of the aleurone layer. Journal of Cereal Science, 40(3):275–282. [doi:10.1016/j.jcs.2004.08.002]CrossRefGoogle Scholar
  14. Atanasiu, V., Manolescu, B., Stoian, I., 2007. Hepcidin—central regulator of iron metabolism. European Journal of Haematology, 78(1):1–10. [doi:10.1111/j.1600-0609.2006.00772.x]PubMedCrossRefGoogle Scholar
  15. Bach Kristensen, M., Tetens, I., Alstrup Jorgensen, A.B., Dal Thomsen, A., Milman, N., Hels, O., Sandstrom, B., Hansen, M., 2005. A decrease in iron status in young healthy women after long-term daily consumption of the recommended intake of fibre-rich wheat bread. European Journal of Nutrition, 44(6):334–340. [doi:10.1007/s00394-004-0529-4]PubMedCrossRefGoogle Scholar
  16. Barrientos, L., Scott, J.J., Murthy, P.P.N., 1994. Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen. Plant Physiology, 106(4):1489–1495. [doi:10.1104/pp.106.4.1489]PubMedCrossRefGoogle Scholar
  17. Barrientos, L.G., Murthy, P.P.N., 1996. Conformational studies of myo-inositol phosphates. Carbohydrate Research, 296(1–4):39–54. [doi:10.1016/S0008-6215(96)00250-9]PubMedCrossRefGoogle Scholar
  18. Batten, G.D., Lott, J.N.A., 1986. The influence of phosphorus-nutrition on the appearance and composition of globoid crystals in wheat aleurone cells. Cereal Chemistry, 63(1):14–18.Google Scholar
  19. Benito, P., Miller, D., 1998. Iron absorption and bioavailability: An updated review. Nutrition Research, 18(3):581–603. [doi:10.1016/S0271-5317(98)00044-X]CrossRefGoogle Scholar
  20. Benzie, I.F., 2003. Evolution of dietary antioxidants. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 136(1):113–126. [doi:10.1016/S1095-6433(02)00368-9]CrossRefGoogle Scholar
  21. Berridge, M.J., Irvine, R.F., 1989. Inositol phosphates and cell signalling. Nature, 341(6239):197–205. [doi:10.1038/341197a0]PubMedCrossRefGoogle Scholar
  22. Bezwoda, W., Charlton, R., Bothwell, T., Torrance, J., Mayet, F., 1978. Importance of gastric hydrochloric-acid in absorption of non-heme food iron. Journal of Laboratory and Clinical Medicine, 92(1):108–116.PubMedGoogle Scholar
  23. Bohn, L., Josefsen, L., Meyer, A.S., Rasmussen, S.K., 2007. Quantitative analysis of phytate globoids isolated from wheat bran and characterization of their sequential dephosphorylation by wheat phytase. Journal of Agricultural and Food Chemistry, 55(18):7547–7552. [doi:10.1021/jf071191t]PubMedCrossRefGoogle Scholar
  24. Bohn, T., Davidsson, L., Walczyk, T., Hurrell, R.F., 2004. Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans. American Journal of Clinical Nutrition, 79(3):418–423.PubMedGoogle Scholar
  25. Boyce, A., Walsh, G., 2006. Comparison of selected physicochemical characteristics of commercial phytases relevant to their application in phosphate pollution abatement. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 41(5):789–798. [doi:10.1080/10934520600614397]CrossRefGoogle Scholar
  26. Brady, S.M., Callan, J.J., Cowan, D., McGrane, M., O’Doherty, J.V., 2003. Effect of two microbial phytases on the performance and nutrient retention on grower-finisher pigs fed barley-maize-soyabean meal-based diets. Irish Journal of Agricultural and Food Research, 42(1):101–117.Google Scholar
  27. Brinch-Pedersen, H., Hatzack, F., Sorensen, L.D., Holm, P.B., 2003. Concerted action of endogenous and heterologous phytase on phytic acid degradation in seed of transgenic wheat (Triticum aestivum L.). Transgenic Research, 12(6):649–659. [doi:10.1023/B:TRAG.0000005113.38002.e1]PubMedCrossRefGoogle Scholar
  28. Brinch-Pedersen, H., Hatzack, F., Stoger, E., Arcalis, E., Pontopidan, K., Holm, P.B., 2006. Heat-stable phytases in transgenic wheat (Triticum aestivum L.): Deposition pattern, thermostability, and phytate hydrolysis. Journal of Agricultural and Food Chemistry, 54(13):4624–4632. [doi:10.1021/jf0600152]PubMedCrossRefGoogle Scholar
  29. Brown, E.C., Heit, M.L., Ryan, D.E., 1961. Phytic acid—Analytical investigation. Canadian Journal of Chemistry-Revue Canadienne de Chimie, 39(6):1290–1297. [doi:10.1139/v61-163]CrossRefGoogle Scholar
  30. Brune, M., Rossander, L., Hallberg, L., 1989. Iron-absorption and phenolic compounds—Importance of different phenolic structures. European Journal of Clinical Nutrition, 43(8):547–558.PubMedGoogle Scholar
  31. Brune, M., Rossanderhulten, L., Hallberg, L., Gleerup, A., Sandberg, A.S., 1992. Iron-absorption from bread in humans—Inhibiting effects of cereal fiber, phytate and inositol phosphates with different numbers of phosphate groups. Journal of Nutrition, 122(3):442–449.PubMedGoogle Scholar
  32. Bullock, J.I., Duffin, P.A., Nolan, K.B., Smith, T.K., 1995. Effect of phytate on the in-vitro solubility of Al3+, Ca2+, Hg2+ and Pb2+ as a function of pH at 37 °C. Journal of the Science of Food and Agriculture, 67(4):507–509. [doi:10.1002/jsfa.2740670413]CrossRefGoogle Scholar
  33. Camara, F., Barbera, R., Amaro, M.A., Farre, R., 2007. Calcium, iron, zinc and copper transport and uptake by Caco-2 cells in school meals: Influence of protein and mineral interactions. Food Chemistry, 100(3):1085–1092. [doi:10.1016/j.foodchem.2005.11.010]CrossRefGoogle Scholar
  34. Cao, L., Wang, W.M., Yang, C.T., Yang, Y., Diana, J., Yakupitiyage, A., Luo, Z., Li, D.P., 2007. Application of microbial phytase in fish feed. Enzyme and Microbial Technology, 40(4):497–507. [doi:10.1016/j.enzmictec.2007.01.007]CrossRefGoogle Scholar
  35. Carpenter, C.E., Mahoney, A.W., 1992. Contributions of heme and nonheme iron to human nutrition. Critcal Reviews in Food Science and Nutrition, 31(4):333–367.CrossRefGoogle Scholar
  36. Cheryan, M., 1980. Phytic acid interactions in food systems. CRC Critical Reviews in Food Science and Nutrition, 13(4):297–335.PubMedGoogle Scholar
  37. Cheryan, M., Anderson, F.W., Grynspan, F., 1983. Magnesium-phytate complexes—Effect of pH and molar ratio on solubility characteristics. Cereal Chemistry, 60(3):235–237.Google Scholar
  38. Cho, J., Choi, K., Darden, T., Reynolds, P.R., Petitte, J.N., Shears, S.B., 2006. Avian multiple inositol polyphosphate phosphatase is an active phytase that can be engineered to help ameliorate the planet’s “phosphate crisis”. Journal of Biotechnology, 126(2):248–259. [doi:10.1016/j.jbiotec.2006.04.028]PubMedCrossRefGoogle Scholar
  39. Collatz, F., Bailey, C., 1921. The activity of phytase as determined by the specific conductivity of phytin-phytase solutions. The Journal of Industrial and Engineering Chemistry, 13(4):317–321. [doi:10.1021/ie50136a017]CrossRefGoogle Scholar
  40. Conrad, M.E., Umbreit, J.N., 2002. Pathways of iron absorption. Blood Cells Molecules and Diseases, 29(3):336–355. [doi:10.1006/bcmd.2002.0564]CrossRefGoogle Scholar
  41. Conway, R.E., Powell, J.J., Geissler, C.A., 2007. A food-group based algorithm to predict non-heme iron absorption. International Journal of Food Sciences and Nutrition, 58(3):29–41. [doi:10.1080/09637480601121250]PubMedCrossRefGoogle Scholar
  42. Costello, A.J.R., Glonek, T., Myers, T.C., 1976. P-31 nuclear magnetic resonance-pH titrations of myoinositol hexaphosphate. Carbohydrate Research, 46(2):159–171. [doi:10.1016/S0008-6215(00)84287-1]PubMedCrossRefGoogle Scholar
  43. Cowieson, A.J., Acamovic, T., Bedford, M.R., 2004. The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens. British Poultry Science, 45(1):101–108. [doi:10.1080/00071660410001668923]PubMedCrossRefGoogle Scholar
  44. Davidsson, L., Almgren, A., Juillerat, M.A., Hurrell, R.F., 1995. Manganese absorption in humans—The effect of phytic acid and ascorbic-acid in soy formula. American Journal of Clinical Nutrition, 62(5):984–987.PubMedGoogle Scholar
  45. Dionisio, G., Holm, P.B., Brinch-Pedersen, H., 2007. Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) multiple inositol polyphosphate phosphatases (MINPPs) are phytases expressed during grain filling and germination. Plant Biotechnology Journal, 5(2):325–338. [doi:10.1111/j.1467-7652.2007.00244.x]PubMedCrossRefGoogle Scholar
  46. Dungelhoef, M., Rodehutscord, M., Spiekers, H., Pfeffer, E., 1994. Effects of supplemental microbial phytase on availability of phosphorus contained in maize, wheat and triticale to pigs. Animal Feed Science and Technology, 49(1–2):1–10. [doi:10.1016/0377-8401(94)90076-0]CrossRefGoogle Scholar
  47. Efanov, A.M., Zaitsev, S.V., Berggren, P.O., 1997. Inositol hexakisphosphate stimulates non-Ca2+-mediated and primes Ca2+-mediated exocytosis of insulin by activation of protein kinase C. Proceedings of the National Academy of Sciences of the United States of America, 94(9):4435–4439. [doi:10.1073/pnas.94.9.4435]PubMedCrossRefGoogle Scholar
  48. Egli, I., Davidsson, L., Juillerat, M.A., Barclay, D., Hurrell, R.F., 2002. The influence of soaking and germination on the phytase activity and phytic acid content of grains and seeds potentially useful for complementary feeding. Journal of Food Science, 67(9):3484–3488. [doi:10.1111/j.1365-2621.2002.tb09609.x]CrossRefGoogle Scholar
  49. Egli, I., Davidsson, L., Zeder, C., Walczyk, T., Hurrell, R., 2004. Dephytinization of a complementary food based on wheat and soy increases zinc, but not copper, apparent absorption in adults. Journal of Nutrition, 134(5):1077–1080.PubMedGoogle Scholar
  50. Engle-Stone, R., Yeung, A., Welch, R., Glahn, R., 2005. Meat and ascorbic acid can promote Fe availability from Fe-phytate but not from Fe-tannic acid complexes. Journal of Agricultural and Food Chemistry, 53(26):10276–10284. [doi:10.1021/jf0518453]PubMedCrossRefGoogle Scholar
  51. Filikov, A.V., James, T.L., 1998. Structure-based design of ligands for protein basic domains: Application to the HIV-1 Tat protein. Journal of Computer-Aided Molecular Design, 12(3):229–240. [doi:10.1023/A:1007949625270]PubMedCrossRefGoogle Scholar
  52. Gharib, A.G., Mohseni, S.G., Mohajer, M., Gharib, M., 2006. Bioavailability of essential trace elements in the presence of phytate, fiber and calcium. Journal of Radioanalytical and Nuclear Chemistry, 270(1):209–215. [doi:10.1007/s10967-006-0330-3]CrossRefGoogle Scholar
  53. Gibson, D.M., Ullah, A.H.J., 1988. Purification and characterization of phytase from cotyledons of germinating soybean seeds. Archives of Biochemistry and Biophysics, 260(2):503–513. [doi:10.1016/0003-9861(88)90475-4]PubMedCrossRefGoogle Scholar
  54. Gibson, R.S., Perlas, L., Hotz, C., 2006. Improving the bioavailability of nutrients in plant foods at the household level. Proceedings of the Nutrition Society, 65(2):160–168. [doi:10.1079/PNS2006489]PubMedCrossRefGoogle Scholar
  55. Gillespie, J., Rogers, S.W., Deery, M., Dupree, P., Rogers, J.C., 2005. A unique family of proteins associated with internalized membranes in protein storage vacuoles of the Brassicaceae. Plant Journal, 41(3):429–441.PubMedGoogle Scholar
  56. Glahn, R.P., Wortley, G.M., South, P.K., Miller, D.D., 2002. Inhibition of iron uptake by phytic acid, tannic acid, and ZnCl2: Studies using an in vitro digestion/Caco-2 cell model. Journal of Agricultural and Food Chemistry, 50(2):390–395. [doi:10.1021/jf011046u]PubMedCrossRefGoogle Scholar
  57. Goel, M., Sharma, C.B., 1979. Multiple forms of phytase in germinating cotyledons of cucurbita-maxima. Phyto-chemistry, 18(12):1939–1942. [doi:10.1016/S0031-9422(00)82707-7]Google Scholar
  58. Golovan, S.P., Meidinger, R.G., Ajakaiye, A., Cottrill, M., Wiederkehr, M.Z., Barney, D.J., Plante, C., Pollard, J.W., Fan, M.Z., Hayes, M.A., Laursen, J., Hjorth, J.P., Hacker, R.R., Phillips, J.P., Forsberg, C.W., 2001a. Pigs expressing salivary phytase produce low-phosphorus manure (errata). Nature Biotechnology, 19(10):979. [doi:10.1038/nbt1001-979]CrossRefGoogle Scholar
  59. Golovan, S.P., Meidinger, R.G., Ajakaiye, A., Cottrill, M., Wiederkehr, M.Z., Barney, D.J., Plante, C., Pollard, J.W., Fan, M.Z., Hayes, M.A., Laursen, J., Hjorth, J.P., Hacker, R.R., Phillips, J.R., Forsberg, C.W., 2001b. Pigs expressing salivary phytase produce low-phosphorus manure. Nature Biotechnology, 19(8):741–745. [doi:10.1038/90788]PubMedCrossRefGoogle Scholar
  60. Gonnety, J.T., Niamke, S., Meuwiah, F.B., N’guessan Kouadio, E.J., Kouame, L.P., 2007. Purification, kinetic properties and physicochemical characterization of a novel acid phosphatase (AP) from germinating peanut (Arachis hypogaea) seed. Italian Journal of Biochemistry, 56(2):149–157.PubMedGoogle Scholar
  61. Graf, E., Mahoney, J.R., Bryant, R.G., Eaton, J.W., 1984. Iron-catalyzed hydroxyl radical formation—Stringent requirement for free iron coordination site. Journal of Biological Chemistry, 259(6):3620–3624.PubMedGoogle Scholar
  62. Grases, F., Garcia-Ferragut, L., Costa-Bauza, A., 1998. Development of calcium oxalate crystals on urothelium: Effect of free radicals. Nephron, 78(3):296–301. [doi:10.1159/000044939]PubMedCrossRefGoogle Scholar
  63. Grases, F., Simonet, B.M., Prieto, R.M., March, J.G., 2001a. Phytate levels in diverse rat tissues: Influence of dietary phytate. British Journal of Nutrition, 86(2):225–231.PubMedGoogle Scholar
  64. Grases, F., Simonet, B.M., Prieto, R.M., March, J.G., 2001b. Variation of InsP(4), InsP(5) and InsP(6) levels in tissues and biological fluids depending on dietary phytate. Journal of Nutrional Biochemistry, 12(10):595–601. [doi:10.1016/S0955-2863(01)00178-4]CrossRefGoogle Scholar
  65. Grases, F., Simonet, B.M., Vucenik, I., Prieto, R.M., Costa-Bauza, A., March, J.G., Shamsuddin, A.M., 2001c. Absorption and excretion of orally administered inositol hexaphosphate (IP6 or phytate) in humans. Biofactors, 15(1):53–61.PubMedGoogle Scholar
  66. Grases, F., Perello, J., Prieto, R.M., Simonet, B.M., Torres, J.J., 2004. Dietary myo-inositol hexaphosphate prevents dystrophic calcifications in soft tissues: A pilot study in Wistar rats. Life Sciences, 75(1):11–19. [doi:10.1016/j.lfs.2003.11.030]PubMedCrossRefGoogle Scholar
  67. Grases, F., Costa-Bauza, A., Perello, J., Isern, B., Vucenik, I., Valiente, M., Munoz, J.A., Prieto, R.M., 2006. Influence of concomitant food intake on the excretion of orally administered myo-inositol hexaphosphate in humans. Journal of Medicinal Food, 9(1):72–76. [doi:10.1089/jmf.2006.9.72]PubMedCrossRefGoogle Scholar
  68. Greiner, R., 2002. Purification and characterization of three phytases from germinated lupine seeds (Lupinus albus var. Amiga). Journal of Agricultural and Food Chemistry, 50(23):6858–6864. [doi:10.1021/jf025619u]PubMedCrossRefGoogle Scholar
  69. Greiner, R., Alminger, M.L., 1999. Purification and characterization of a phytate-degrading enzyme from germinated oat (Avena sativa). Journal of the Science of Food and Agriculture, 79(11):1453–1460. [doi:10.1002/(SICI)1097-0010(199908)79:11〈1453::AID-JSFA386〉3.3.CO;2-I]CrossRefGoogle Scholar
  70. Greiner, R., Alminger, M.L., 2001. Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by phytate-degrading enzymes of cereals. Journal of Food Biochemistry, 25(3):229–248. [doi:10.1111/j.1745-4514.2001.tb00736.x]CrossRefGoogle Scholar
  71. Greiner, R., Carlsson, N.G., 2006. Myo-Inositol phosphate isomers generated by the action of a phytate-degrading enzyme from Klebsiella terrigena on phytate. Canadian Journal of Microbiology, 52(8):759–768. [doi:10.1139/W06-028]PubMedCrossRefGoogle Scholar
  72. Greiner, R., Konietzny, U., Jany, K.D., 1998. Purification and properties of a phytase from rye. Journal of Food Biochemistry, 22(2):143–161. [doi:10.1111/j.1745-4514.1998.tb00236.x]CrossRefGoogle Scholar
  73. Greiner, R., Jany, K.D., Alminger, M.L., 2000. Identification and properties of myo-inositol hexakisphosphate phosphohydrolases (Phytases) from barley (Hordeum vulgare). Journal of Cereal Science, 31(2):127–139. [doi:10.1006/jcrs.1999.0254]CrossRefGoogle Scholar
  74. Greiner, R., Alminger, M.L., Carlsson, N.G., 2001a. Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of baker’s yeast. Journal of Agricultural and Food Chemistry, 49(5):2228–2233. [doi:10.1021/jf0100090]PubMedCrossRefGoogle Scholar
  75. Greiner, R., Muzquiz, M., Burbano, C., Cuadrado, C., Pedrosa, M.M., Goyoga, C., 2001b. Purification and characterization of a phytate-degrading enzyme from germinated faba beans (Vicia faba var. Alameda). Journal of Agricultural and Food Chemistry, 49(5):2234–2240. [doi:10.1021/jf0100806]PubMedCrossRefGoogle Scholar
  76. Grusak, M.A., Pearson, J.N., Marentes, E., 1999. The physiology of micronutrient homeostasis in field crops. Field Crops Research, 60(1–2):41–56. [doi:10.1016/S0 378-4290(98)00132-4]CrossRefGoogle Scholar
  77. Gunshin, H., Mackenzie, B., Berger, U.V., Gunshin, Y., Romero, M.F., Boron, W.F., Nussberger, S., Gollan, J.L., Hediger, M.A., 1997. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, 388(6641):482–488. [doi:10.1038/41343]PubMedCrossRefGoogle Scholar
  78. Guttieri, M., Bowen, D., Dorsch, J.A., Raboy, V., Souza, E., 2003. Identification and characterization of a low phytic acid wheat. Crop Science, 44(2):418–424.CrossRefGoogle Scholar
  79. Haefner, S., Knietsch, A., Scholten, E., Braun, J., Lohscheidt, M., Zelder, O., 2005. Biotechnological production and applications of phytases. Applied Microbiology and Biotechnology, 68(5):588–597. [doi:10.1007/s00253-005-0005-y]PubMedCrossRefGoogle Scholar
  80. Hallberg, L., Brune, M., Rossander, L., 1989. Iron-absorption in man—ascorbic-acid and dose-dependent inhibition by phytate. American Journal of Clinical Nutrition, 49(1): 140–144.PubMedGoogle Scholar
  81. Hallberg, L., Rossander-Hulten, L., Brune, M., Gleerup, A., 1992. Calcium and iron absorption: Mechanism of action and nutritional importance. European Journal of Clinical Nutrition, 46(5):317–327.PubMedGoogle Scholar
  82. Hamada, A., Yamaguchi, K., Harada, M., Horiguchi, K., Takahashi, T., Honda, H., 2006. Recombinant, rice-produced yeast phytase shows the ability to hydrolyze phytate derived from seed-based feed, and extreme stability during ensilage treatment. Bioscience Biotechnology and Biochemistry, 70(6):1524–1527. [doi:10.1271/bbb.60039]CrossRefGoogle Scholar
  83. Hambidge, K.M., Krebs, N.F., Westcott, J.L., Sian, L., Miller, L.V., Peterson, K.L., Raboy, V., 2005. Absorption of calcium from tortilla meals prepared from low-phytate maize. American Journal of Clinical Nutrition, 82(1):84–87.PubMedGoogle Scholar
  84. Hara, A., Ebina, S., Kondo, A., Funaguma, T., 1985. A new type of phytase from pollen of Typha-Latifolia l. Agricultural and Biological Chemistry, 49(12):3539–3544.Google Scholar
  85. Haros, M., Rosell, C.M., Benedito, C., 2001a. Fungal phytase as a potential breadmaking additive. European Food Research and Technology, 213(4–5):317–322. [doi:10.1007/s002170100396]CrossRefGoogle Scholar
  86. Haros, M., Rosell, C.M., Benedito, C., 2001b. Use of fungal phytase to improve breadmaking performance of whole wheat bread. Journal of Agricultural and Food Chemistry, 49(11):5450–5454. [doi:10.1021/jf010642l]PubMedCrossRefGoogle Scholar
  87. Hawkins, P.T., Poyner, D.R., Jackson, T.R., Letcher, A.J., Lander, D.A., Irvine, R.F., 1993. Inhibition of iron-catalyzed hydroxyl radical formation by inositol polyphosphates—A possible physiological function for myoinositol hexakisphosphate. Biochemical Journal, 294:929–934.PubMedGoogle Scholar
  88. Hayakawa, T., Toma, Y., Igaue, I., 1989. Purification and characterization of acid-phosphatases with or without phytase activity from rice bran. Agricultural and Biological Chemistry, 53(6):1475–1483.Google Scholar
  89. He, Z.Q., Honeycutt, C.W., Zhang, T.Q., Bertsch, P.M., 2006. Preparation and FT-IR characterization of metal phytate compounds. Journal of Environmental Quality, 35(4):1319–1328. [doi:10.2134/jeq2006.0008]PubMedCrossRefGoogle Scholar
  90. Hegeman, C.E., Grabau, E.A., 2001. A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiology, 126(4):1598–1608. [doi:10.1104/pp.126.4.1598]PubMedCrossRefGoogle Scholar
  91. Hertrampf, E., Olivares, M., 2004. Iron amino acid chelates. International Journal for Vitamin and Nutrition Research, 74(6):435–443. [doi:10.1024/0300-9831.74.6.435]PubMedCrossRefGoogle Scholar
  92. Holm, P.B., Kristiansen, K.N., Pedersen, H.B., 2002. Transgenic approaches in commonly consumed cereals to improve iron and zinc content and bioavailability. Journal of Nutrition, 132(3):514S–516S.PubMedGoogle Scholar
  93. Hubel, F., Beck, E., 1996. Maize root phytase—Purification, characterization, and localization of enzyme activity and its putative substrate. Plant Physiology, 112(4):1429–1436.PubMedGoogle Scholar
  94. Huebers, H.A., Csiba, E., Josephson, B., Finch, C.A., 1990. Iron-absorption in the iron-deficient rat. Blut., 60(6): 345–351. [doi:10.1007/BF01737850]PubMedCrossRefGoogle Scholar
  95. Hurrell, R.F., 2004. Phytic acid degradation as a means of improving iron absorption. International Journal for Vitamin and Nutrition Research, 74(6):445–452. [doi:10.1024/0300-9831.74.6.445]PubMedCrossRefGoogle Scholar
  96. Hurrell, R.F., Reddy, M.B., Juillerat, M.A., Cook, J.D., 2003. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. American Journal of Clinical Nutrition, 77(5):1213–1219.PubMedGoogle Scholar
  97. Hurrell, R.F., Lynch, S., Bothwell, T., Cori, H., Glahn, R., Hertrampf, E., Kratky, Z., Miller, D., Rodenstein, M., Streekstra, H., Teucher, B., Turner, E., Yeung, C.K., Zimmermann, M.B., 2004. Enhancing the absorption of fortification iron—A SUSTAIN Task Force report. International Journal for Vitamin and Nutrition Research, 74(6):387–401. [doi:10.1024/0300-9831.74.6.387]PubMedCrossRefGoogle Scholar
  98. Iqbal, T.H., Lewis, K.O., Cooper, B.T., 1994. Phytase activity in the human and rat small intestine. Gut, 35(9):1233–1236. [doi:10.1136/gut.35.9.1233]PubMedCrossRefGoogle Scholar
  99. Iskander, F.Y., Morad, M.M., 1986. Multielement determination in wheat and bran. Journal of Radioanalytical and Nuclear Chemistry-Letters, 105(3):151–156. [doi:10.1007/BF02162964]CrossRefGoogle Scholar
  100. IUPAC-IUB, 1989. Numbering of atoms in myo-inositol. Recommendations 1988. Nomenclature Committee of the International Union of Biochemistry. Biochem. J., 258(1):1–2.Google Scholar
  101. Jang, D.A., Fadel, J.G., Klasing, K.C., Mireles, A.J.Jr, Ernst, R.A., Young, K.A., Cook, A., Raboy, V., 2003. Evaluation of low-phytate corn and barley on broiler chick performance. Poultry Science, 82(12):1914–1924.PubMedGoogle Scholar
  102. Jariwalla, R.J., 1999. Inositol hexaphosphate (IP6) as an anti-neoplastic and lipid-lowering agent. Anticancer Research, 19(5A):3699–3702.PubMedGoogle Scholar
  103. Jiang, L.W., Phillips, T.E., Hamm, C.A., Drozdowicz, Y.M., Rea, P.A., Maeshima, M., Rogers, S.W., Rogers, J.C., 2001. The protein storage vacuole: A unique compound organelle. Journal of Cell Biology, 155(6):991–1002. [doi:10.1083/jcb.200107012]PubMedCrossRefGoogle Scholar
  104. Jog, S.P., Garchow, B.G., Mehta, B.D., Murthy, P.P.N., 2005. Alkaline phytase from lily pollen: Investigation of biochemical properties. Archives of Biochemistry and Biophysics, 440(2):133–140. [doi:10.1016/]PubMedCrossRefGoogle Scholar
  105. Johnson, L.F., Tate, M.E., 1969. Structure of phytic acids. Canadian Journal of Chemistry, 47(1):63–73. [doi:10.1139/v69-008]CrossRefGoogle Scholar
  106. Josefsen, L., Bohn, L., Sørensen, M.B., Rasmussen, S.K., 2007. Characterization of a multifunctional inositol phosphate kinase from rice and barley belonging to the ATP-grasp superfamily. Gene, 397(1–2):114–125. [doi:10.1016/j.gene.2007.04.018]PubMedCrossRefGoogle Scholar
  107. Joyce, C., Deneau, A., Peterson, K., Ockenden, I., Raboy, V., Lott, J.N.A., 2005. The concentrations and distributions of phytic acid phosphorus and other mineral nutrients in wild-type and low phytic acid Js-12-LPA wheat (Triticum aestivum) grain parts. Canadian Journal of Botany-Revue Canadienne de Botanique, 83(12):1599–1607. [doi:10.1139/b05-128]CrossRefGoogle Scholar
  108. Kaur, P., Kunze, G., Satyanarayana, T., 2007. Yeast phytases: Present scenario and future perspectives. Critical Reviews in Biotechnology, 27(2):93–109. [doi:10.1080/07388550701334519]PubMedCrossRefGoogle Scholar
  109. Kemme, P.A., Schlemmer, U., Mroz, Z., Jongbloed, A.W., 2006. Monitoring the stepwise phytate degradation in the upper gastrointestinal tract of pigs. Journal of the Science of Food and Agriculture, 86(4):612–622. [doi:10.1002/jsfa.2380]CrossRefGoogle Scholar
  110. Kerovuo, J., Rouvinen, J., Hatzack, F., 2000. Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase: Indication of a novel reaction mechanism. Biochemical Journal, 352(3):623–628. [doi:10.1042/0264-6021:3520623]PubMedCrossRefGoogle Scholar
  111. Kim, H., Eskin, N.A.M., 1987. Canola phytase—isolation and characterization. Journal of Food Science, 52(5):1353–1354. [doi:10.1111/j.1365-2621.1987.tb14080.x]CrossRefGoogle Scholar
  112. Kim, Y.J., Carpenter, C.E., Mahoney, A.W., 1993. Gastric-acid production, iron status and dietary phytate alter enhancement by meat of iron-absorption in rats. Journal of Nutrition, 123(5):940–946.PubMedGoogle Scholar
  113. Klabunde, T., Strater, N., Krebs, B., Witzel, H., 1995. Structural relationship between the mammalian Fe(III)-Fe(II) and the Fe(III)-Zn(II) plant purple acid-phosphatases. Febs Letters, 367(1):56–60. [doi:10.1016/0014-5793(95)00536-I]PubMedCrossRefGoogle Scholar
  114. Klabunde, T., Strater, N., Frohlich, R., Witzel, H., Krebs, B., 1996. Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures. Journal of Molecular Biology, 259(4):737–748. [doi:10.1006/jmbi.1996.0354]PubMedCrossRefGoogle Scholar
  115. Knorr, D., Watkins, T.R., Carlson, B.L., 1981. Enzymatic reduction of phytate in whole wheat breads. Journal of Food Science, 46(6):1866–1869. [doi:10.1111/j.1365-2621.1981.tb04506.x]CrossRefGoogle Scholar
  116. Kolobkowa, E.B., 1936. Investigation of phytase from wheat flour. Biochimija/Akademija Nauk SSSR, (1): 512–524 (in German).Google Scholar
  117. Konietzny, U., Greiner, R., Jany, K.D., 1994. Purification and characterization of a phytase from spelt. Journal of Food Biochemistry, 18(3):165–183. [doi:10.1111/j.1745-4514.1994.tb00495.x]CrossRefGoogle Scholar
  118. Krishnamurthy, P., Xie, T., Schuetz, J.D., 2007. The role of transporters in cellular heme and porphyrin homeostasis. Pharmacology and Therapeutics, 114(3):345–358. [doi:10.1016/j.pharmthera.2007.02.001]PubMedCrossRefGoogle Scholar
  119. Laboure, A.M., Gagnon, J., Lescure, A.M., 1993. Purification and characterization of a phytase (myo-inositol-hexakisphosphate phosphohydrolase) accumulated in maize (Zea mays) seedlings during germination. Biochemical Journal, 295:413–419.PubMedGoogle Scholar
  120. Larsson, O., Barker, C.J., Sjoholm, A., Carlqvist, H., Michell, R.H., Bertorello, A., Nilsson, T., Honkanen, R.E., Mayr, G.W., Zwiller, J., Berggren, P.O., 1997. Inhibition of phosphatases and increased Ca2+ channel activity by inositol hexakisphosphate. Science, 278(5337):471–474. [doi:10.1126/science.278.5337.471]PubMedCrossRefGoogle Scholar
  121. Layrisse, M., Garcia-Casal, M.N., Solano, L., Baron, M.A., Arguello, F., Llovera, D., Ramirez, J., Leets, I., Tropper, E., 2000. New property of vitamin a and beta-carotene on human iron absorption: Effect on phytate and polyphenols as inhibitors of iron absorption. Archivos Latinoamericanos de Nutricion, 50(3):243–248.PubMedGoogle Scholar
  122. Lee, S.H., Park, H.J., Chun, H.K., Cho, S.Y., Cho, S.M., Lillehoj, H.S., 2006. Dietary phytic acid lowers the blood glucose level in diabetic KK mice. Nutrition Research, 26(9):474–479. [doi:10.1016/j.nutres.2006.06.017]CrossRefGoogle Scholar
  123. Leenhardt, F., Levrat-Verny, M.A., Chanliaud, E., Remesy, C., 2005. Moderate decrease of pH by sourdough fermentation is sufficient to reduce phytate content of whole wheat flour through endogenous phytase activity. Journal of Agricultural and Food Chemistry, 53(1):98–102. [doi:10.1021/jf049193q]PubMedCrossRefGoogle Scholar
  124. Lei, X.G., Porres, J.M., 2003. Phytase enzymology, applications, and biotechnology. Biotechnology Letters, 25(21):1787–1794. [doi:10.1023/A:1026224101580]PubMedCrossRefGoogle Scholar
  125. Li, M.G., Osaki, M., Honma, M., Tadano, T., 1997. Purification and characterization of phytase induced in tomato roots under phosphorus-deficient conditions. Soil Science and Plant Nutrition, 43(1):179–190.Google Scholar
  126. Li, X., Wu, Z.Q., Li, W.D., Yan, R.X., Li, L., Li, J., Li, Y.H., Li, M.G., 2007. Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting. Applied Microbiology and Biotechnology, 74(5):1120–1125. [doi:10.1007/s00253-006-0750-6]PubMedCrossRefGoogle Scholar
  127. Lim, P.E., Tate, M.E., 1973. Phytases. 2. Properties of phytase fractions F1 and F2 from wheat bran and myoinositol phosphates produced by fraction F2. Biochimica et Biophysica Acta, 302(2):316–328.PubMedGoogle Scholar
  128. Lin, L., Ockenden, I., Lott, J.N.A., 2005. The concentrations and distribution of phytic acid-phosphorus and other mineral nutrients in wild-type and low phytic acid1-1 (lpa1-1) corn (Zea mays L.) grains and grain parts. Canadian Journal of Botany-Revue Canadienne de Botanique, 83(1):131–141. [doi:10.1139/b04-146]CrossRefGoogle Scholar
  129. Liu, J.C., Ockenden, I., Truax, M., Lott, J.N.A., 2004. Phytic acid-phosphorus and other nutritionally important mineral nutrient elements in grains of wild-type and low phytic acid (lpa1-1) rice. Seed Science Research, 14(2):109–116. [doi:10.1079/SSR2004160]CrossRefGoogle Scholar
  130. Liu, K., Peterson, K.L., Raboy, V., 2007. Comparison of the phosphorus and mineral concentrations in bran and abraded kernel fractions of a normal barley (Hordeum vulgare) cultivar versus four low phytic acid isolines. Journal of Agricultural and Food Chemistry, 55(11):4453–4460. [doi:10.1021/jf0637776]PubMedCrossRefGoogle Scholar
  131. Liu, Z.H., Wang, H.Y., Wang, X.E., Zhang, G.P., Chen, P.D., Liu, D.J., 2006. Genotypic and spike positional difference in grain phytase activity, phytate, inorganic phosphorus, iron, and zinc contents in wheat (Triticum aestivum L.). Journal of Cereal Science, 44(2):212–219. [doi:10.1016/j.jcs.2006.06.001]CrossRefGoogle Scholar
  132. Liu, Z.H., Wang, H.Y., Wang, X.E., Zhang, G.P., Chen, P.D., Liu, D.J., 2007. Phytase activity, phytate, iron, and zinc contents in wheat pearling fractions and their variation across production locations. Journal of Cereal Science, 45(3):319–326. [doi:10.1016/j.jcs.2006.10.004]CrossRefGoogle Scholar
  133. Loewus, F.A., Murthy, P.P.N., 2000. Myo-inositol metabolism in plants. Plant Science, 150(1):1–19. [doi:10.1016/S0168-9452(99)00150-8]CrossRefGoogle Scholar
  134. Lolas, G.M., Markakis, P., 1977. Phytase of navy beans (Phaseolus vulgaris). Journal of Food Science, 42(4):1094–1097. [doi:10.1111/j.1365-2621.1977.tb12674.x]CrossRefGoogle Scholar
  135. Lonnerdal, B., 1997. Effects of milk and milk components on calcium, magnesium, and trace element absorption during infancy. Physiological Reviews, 77(3):643–669.PubMedGoogle Scholar
  136. Lonnerdal, B., 2000. Dietary factors influencing zinc absorption. Journal of Nutrition, 130(5):1378S–1383S.PubMedGoogle Scholar
  137. Lott, J.N.A., 1980. Protein Bodies. In: Tolbert, N.E. (Ed.), The Biochemistry of Plants. Academic Press, New York, p.589–623.Google Scholar
  138. Lott, J.N.A., Spitzer, E., 1980. X-Ray-analysis studies of elements stored in protein body globoid crystals of Triticum grains. Plant Physiology, 66(3):494–499.PubMedGoogle Scholar
  139. Lott, J.N.A., Ockenden, I., Raboy, V., Batten, G.D., 2000. Phytic acid and phosphorus in crop seeds and fruits: A global estimate. Seed Science Research, 10(1):11–33.Google Scholar
  140. Lott, J.N.A., Ockenden, I., Raboy, V., Batten, G.D., 2001. Phytic acid and phosphorus in crop seeds and fruits: A global estimate (Errata). Seed Science Research, 11(2):181.Google Scholar
  141. Macbeth, M.R., Schubert, H.L., van Demark, A.P., Lingam, A.T., Hill, C.P., Bass, B.L., 2005. Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science, 309(5740):1534–1539. [doi:10.1126/science.1113150]PubMedCrossRefGoogle Scholar
  142. Maddaiah, V.T., Kurnick, A.A., Reid, B.L., 1964. Phytic acid studies. Proceedings of the Society for Experimental Biology and Medicine, 115(2):391–393.PubMedGoogle Scholar
  143. Mahajan, A., Dua, S., 1997. Nonchemical approach for reducing antinutritional factors in rapeseed (Brassica campestris var. Toria) and characterization of enzyme phytase. Journal of Agricultural and Food Chemistry, 45(7):2504–2508. [doi:10.1021/jf9609136]CrossRefGoogle Scholar
  144. Mali, G., Sala, M., Arcon, I., Kaucic, V., Kolar, J., 2006. Insight into the short-range structure of amorphous iron inositol hexaphosphate as provided by P-31 NMR and Fe X-ray absorption spectroscopy. Journal of Physical Chemistry B, 110(46):23060–23067. [doi:10.1021/jp0633805]CrossRefGoogle Scholar
  145. Mandal, N.C., Biswas, B.B., Burman, S., 1972. Metabolism of inositol phosphates. 3. Isolation, purification and characterization of phytase from germinating mung beans. Phytochemistry, 11(2):495–502. [doi:10.1016/0031-9422(72)80003-7]CrossRefGoogle Scholar
  146. Masud, T., Mahmood, T., Latif, A., Sammi, S., Hameed, T., 2007. Influence of processing and cooking methodologies for reduction of phytic acid content in wheat (Triticum aestivum) varieties. Journal of Food Processing and Preservation, 31(5):583–594. [doi:10.1111/j.1745-4549.2007.00147.x]CrossRefGoogle Scholar
  147. Maugenest, S., Martinez, I., Lescure, A.M., 1997. Cloning and characterization of a cDNA encoding a maize seedling phytase. Biochemical Journal, 322:511–517.PubMedGoogle Scholar
  148. McCance, R.A., Widdowson, E.M., 1949. Phytic acid. British Journal of Nutrition, 2(4):401–403. [doi:10.1079/BJN19480069]PubMedCrossRefGoogle Scholar
  149. McCollum, E.V., Hart, E.B., 1908. On the occurrence of a phytin-splitting enzyme in animal tissues. Journal of Biological Chemistry, 4(6):497–500.Google Scholar
  150. Mckie, A.T., Barrow, D., Latunde-Dada, G.O., Rolfs, A., Sager, G., Mudaly, E., Mudaly, M., Richardson, C., Barlow, D., Bomford, A., Peters, T.J., Raja, K.B., Shirali, S., Hediger, M.A., Farzaneh, F., Simpson, R.J., 2001. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science, 291(5509):1755–1759. [doi:10.1126/science.1057206]PubMedCrossRefGoogle Scholar
  151. Mehta, B.D., Jog, S.P., Johnson, S.C., Murthy, P.P.N., 2006. Lily pollen alkaline phytase is a histidine phosphatase similar to mammalian multiple inositol polyphosphate phosphatase (MINPP). Phytochemistry, 67(17):1874–1886. [doi:10.1016/j.phytochem.2006.06.008]PubMedCrossRefGoogle Scholar
  152. Mendoza, C., Viteri, F.E., Lonnerdal, B., Young, K.A., Raboy, V., Brown, K.H., 1998. Effect of genetically modified, low-phytic acid maize on absorption of iron from tortillas. American Journal of Clinical Nutrition, 68(5):1123–1127.PubMedGoogle Scholar
  153. Mollgaard, H., 1946. On phytic acid, its importance in metabolism and its enzymic cleavage in bread supplemented with calcium. Biochemical Journal, 40(4):589–603.PubMedGoogle Scholar
  154. Morgounov, A., Gomez-Becerra, H.F., Abugalieva, A., Dzhunusova, M., Yessimbekova, M., Muminjanov, H., Zelenskiy, Y., Ozturk, L., Cakmak, I., 2007. Iron and zinc grain density in common wheat grown in Central Asia. Euphytica, 155(1–2):193–203. [doi:10.1007/s10681-006-9321-2]CrossRefGoogle Scholar
  155. Morrison, I.N., Kuo, J., Obrien, T.P., 1975. Histochemistry and fine-structure of developing wheat aleurone cells. Planta, 123(2):105–116. [doi:10.1007/BF00383859]CrossRefGoogle Scholar
  156. Mullaney, E.J., Ullah, A.H., 2003. The term phytase comprises several different classes of enzymes. Biochemical and Biophysical Research Communications, 312(1):179–184. [doi:10.1016/j.bbrc.2003.09.176]PubMedCrossRefGoogle Scholar
  157. Mulvihill, B., Morrissey, P.A., 1998. An investigation of factors influencing the bioavailability of non-haem iron from meat systems. Irish Journal of Agricultural and Food Research, 37(2):219–226.Google Scholar
  158. Nagai, Y., Funahashi, S., 1962. Phytase (myo-inositol-hexaphosphate phosphohydrolase) from wheat bran. 1. Purification and substrate specificity. Agricultural and Biological Chemistry, 26(12):794–803.Google Scholar
  159. Nahm, K.H., 2002. Efficient feed nutrient utilization to reduce pollutants in poultry and swine manure. Critical Reviews in Environmental Science and Technology, 32(1):1–16. [doi:10.1080/10643380290813435]CrossRefGoogle Scholar
  160. Nakano, T., Joh, T., Tokumoto, E., Hayakawa, T., 1999. Purification and characterization of phytase from bran of Triticum aestivum L. cv. Nourin #61. Food Science and Technology Research, 5(1):18–23. [doi:10.3136/fstr.5.18]CrossRefGoogle Scholar
  161. Nakano, T., Joh, T., Narita, K., Hayakawa, T., 2000. The pathway of dephosphorylation of myo-inositol hexakisphosphate by phytases from wheat bran of Triticum aestivum L. cv. Nourin #61. Bioscience Biotechnology and Biochemistry, 64(5):995–1003. [doi:10.1271/bbb.64.995]CrossRefGoogle Scholar
  162. Neevel, J.G., 1995. Phytate—A potential conservation agent for the treatment of ink corrosion caused by irongall inks. Restaurator-International Journal for the Preservation of Library and Archival Material, 16(3):143–160.Google Scholar
  163. Nicolas, G., Chauvet, C., Viatte, L., Danan, J.L., Bigard, X., Devaux, I., Beaumont, C., Kahn, A., Vaulont, S., 2002. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. Journal of Clinical Investigation, 110(7):1037–1044. [doi:10.1172/JCI200215686]PubMedGoogle Scholar
  164. Nielsen, M.M., Damstrup, M.L., Dal Thomsen, A., Rasmussen, S.K., Hansen, A., 2007. Phytase activity and degradation of phytic acid during rye bread making. European Food Research and Technology, 225(2):173–181. [doi:10.1007/s00217-006-0397-7]CrossRefGoogle Scholar
  165. Nolan, K.B., Duffin, P.A., Mcweeny, D.J., 1987. Effects of phytate on mineral bioavailability—Invitro studies on Mg2+, Ca2+, Fe3+, Cu2+ and Zn2+ (also Cd2+) solubilities in the presence of phytate. Journal of the Science of Food and Agriculture, 40(1):79–85. [doi:10.1002/jsfa.2740400110]CrossRefGoogle Scholar
  166. Ockenden, I., Dorsch, J.A., Reid, M.M., Lin, L., Grant, L.K., Raboy, V., Lott, J.N.A., 2004. Characterization of the storage of phosphorus, inositol phosphate and cations in grain tissues of four barley (Hordeum vulgare L.) low phytic acid genotypes. Plant Science, 167(5):1131–1142. [doi:10.1016/j.plantsci.2004.06.008]CrossRefGoogle Scholar
  167. Odell, B.L., Deboland, A.R., Koirtyohann, S.R., 1972. Distribution of phytate and nutritionally important elements among morphological components of cereal grains. Journal of Agricultural and Food Chemistry, 20(3):718–721. [doi:10.1021/jf60181a021]CrossRefGoogle Scholar
  168. Oh, B.C., Choi, W.C., Park, S., Kim, Y.O., Oh, T.K., 2004. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Applied Microbiology and Biotechnology, 63(4):362–372. [doi:10.1007/s00253-003-1345-0]PubMedCrossRefGoogle Scholar
  169. Oh, B.C., Kim, M.H., Yun, B.S., Choi, W.C., Park, S.C., Bae, S.C., Oh, T.K., 2006. Ca2+-inositol phosphate chelation mediates the substrate specificity of beta-propeller phytase. Biochemistry, 45(31):9531–9539. [doi:10.1021/bi0603118]PubMedCrossRefGoogle Scholar
  170. Olczak, M., Morawiecka, B., Watorek, W., 2003. Plant purple acid phosphatases—Genes, structures and biological function. Acta Biochimica Polonica, 50(4):1245–1256.PubMedGoogle Scholar
  171. Onomi, S., Okazaki, Y., Katayama, T., 2004. Effect of dietary level of phytic acid on hepatic and serum lipid status in rats fed a high-sucrose diet. Bioscience Biotechnology and Biochemistry, 68(6):1379–1381. [doi:10.1271/bbb.68.1379]CrossRefGoogle Scholar
  172. Ostanin, K., van Etten, R.L., 1993. Asp304 of Escherichia coli acid phosphatase is involved in leaving group protonation. Journal of Biological Chemistry, 268(28):20778–20784.PubMedGoogle Scholar
  173. Ostanin, K., Harms, E.H., Stevis, P.E., Kuciel, R., Zhou, M.M., van Etten, R.L., 1992. Overexpression, site-directed mutagenesis, and mechanism of Escherichia coli acid phosphatase. Journal of Biological Chemistry, 267(32):22830–22836.PubMedGoogle Scholar
  174. Peers, F.G., 1953. The phytase of wheat. Biochemical Journal 53(1):102–110.PubMedGoogle Scholar
  175. Perales, S., Barbera, R., Lagarda, M.J., Farre, R., 2006. Fortification of milk with calcium: Effect on calcium bioavailability and interactions with iron and zinc. Journal of Agricultural and Food Chemistry 54(13):4901–4906. [doi:10.1021/jf0601214]PubMedCrossRefGoogle Scholar
  176. Persson, H., Turk, M., Nyman, M., Sandberg, A.S., 1998. Binding of Cu2+, Zn2+ and Cd2+ to inositol tri-, tetra-, penta, and hexaphosphates. Journal of Agricultural and Food Chemistry, 46(8):3194–3200. [doi:10.1021/jf971055w]CrossRefGoogle Scholar
  177. Pfeffer, W., 1872. Investigation of the Protein Bodies and the Importance of Aspargins in Seed Germs. In: Pringsheim, N. (Ed.), Annual Science Book of Botany. Verlag von Wilh. Engelmann, Leipzig, p.429–574 (in German).Google Scholar
  178. Phillippy, B.Q., 1998. Purification and catalytic properties of a phytase from scallion (Allium fistulosum L.) leaves. Journal of Agricultural and Food Chemistry, 46(9): 3491–3496. [doi:10.1021/jf9803177]CrossRefGoogle Scholar
  179. Phillippy, B.Q., 2006. Transport of calcium across Caco-2 cells in the presence of inositol hexakisphosphate. Nutrition Research, 26(3):146–149. [doi:10.1016/j.nutres.2006.02.008]CrossRefGoogle Scholar
  180. Pontoppidan, K., Pettersson, D., Sandberg, A.S., 2007. The type of thermal feed treatment influences the inositol phosphate composition. Animal Feed Science and Technology, 132(1–2):137–147. [doi:10.1016/j.anifeedsci.2006.03.008]CrossRefGoogle Scholar
  181. Porres, J.M., Etcheverry, P., Miller, D.D., Lei, X.G., 2001. Phytase and citric acid supplementation in whole-wheat bread improves phytate-phosphorus release and iron dialyzability. Journal of Food Science, 66(4):614–619. [doi:10.1111/j.1365-2621.2001.tb04610.x]CrossRefGoogle Scholar
  182. Posternak, S., Posternak, T., 1929. About the configuration of inactive inosite. Helv. Chim. Acta/Soc. Chim. Helv., 12: 1165–1181 (in French).CrossRefGoogle Scholar
  183. Posternak, T., 1965. Cyclitols. Holden-Day, Inc., San Francisco, CA.Google Scholar
  184. Poulsen, H.D., Johansen, K.S., Hatzack, F., Boisen, S., Rasmussen, S.K., 2001. Nutritional value of low-phytate barley evaluated in rats. Acta Agriculturae Scandinavica Section A-Animal Science, 51(1):53–58. [doi:10.1080/090647001300004790]CrossRefGoogle Scholar
  185. Raboy, V., 2003. Myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry, 64(6):1033–1043. [doi:10.1016/S0031-9422(03)00446-1]PubMedCrossRefGoogle Scholar
  186. Raboy, V., 2007. The ABCs of low-phytate crops. Nature Biotechnology, 25(8):874–875. [doi:10.1038/nbt0807-874]PubMedCrossRefGoogle Scholar
  187. Raffin, S.B., Woo, C.H., Roost, K.T., Price, D.C., Schmid, R., 1974. Intestinal absorption of hemoglobin iron-heme cleavage by mucosal heme oxygenase. Journal of Clinical Investigation, 54(6):1344–1352.PubMedCrossRefGoogle Scholar
  188. Rasmussen, S.K., Johansen, K.S., Sørensen, M.B., 2007. Polynucleotides Encoding Phytase Polypeptides. US Patent 10/275,311(7,186,817).Google Scholar
  189. Reddy, M.B., Hurrell, R.F., Juillerat, M.A., Cook, J.D., 1996. The influence of different protein sources on phytate inhibition of nonheme-iron absorption in humans. American Journal of Clinical Nutrition, 63(2):203–207.PubMedGoogle Scholar
  190. Revy, P.S., Jondreville, C., Dourmad, J.Y., Nys, Y., 2006. Assessment of dietary zinc requirement of weaned piglets fed diets with or without microbial phytase. Journal of Animal Physiology and Animal Nutrition, 90(1–2):50–59. [doi:10.1111/j.1439-0396.2005.00576.x]PubMedCrossRefGoogle Scholar
  191. Rodrigues-Filho, U.P., Vaz, S., Felicissimo, M.P., Scarpellini, M., Cardoso, D.R., Vinhas, R.C.J., Landers, R., Schneider, J.F., McGarvey, B.R., Andersen, M.L., Skibsted, L.H., 2005. Heterometallic manganese/zinc-phytate complex as a model compound for metal storage in wheat grains. Journal of Inorganic Biochemistry, 99(10):1973–1982. [doi:10.1016/j.jinorgbio.2005.06.014]PubMedCrossRefGoogle Scholar
  192. Roughead, Z.K., Zito, C.A., Hunt, J.R., 2005. Inhibitory effects of dietary calcium on the initial uptake and subsequent retention of heme and nonheme iron in humans: Comparisons using an intestinal lavage method. American Journal of Clinical Nutrition, 82(3):589–597.PubMedGoogle Scholar
  193. Saiardi, A., Sciambi, C., McCaffery, J.M., Wendland, B., Snyder, S.H., 2002. Inositol pyrophosphates regulate endocytic trafficking. Proceedings of the National Academy of Sciences of the United States of America, 99(22):14206–14211. [doi:10.1073/pnas.212527899]PubMedCrossRefGoogle Scholar
  194. Sala, M., Kolar, J., Strlic, M., Kocevar, M., 2006. Synthesis of myo-inositol 1,2,3-tris-and 1,2,3,5-tetrakis(dihydrogen phosphate)s as a tool for the inhibition of iron-gall-ink corrosion. Carbohydrate Research, 341(7):897–902. [doi:10.1016/j.carres.2006.02.029]PubMedCrossRefGoogle Scholar
  195. Salovaara, S., Alminger, M.L., Eklund-Jonsson, C., Andlid, T., Sandberg, A.S., 2003a. Prolonged transit time through the stomach and small intestine improves iron dialyzability and uptake in vitro. Journal of Agricultural and Food Chemistry, 51(17):5131–5136. [doi:10.1021/jf0208233]PubMedCrossRefGoogle Scholar
  196. Salovaara, S., Sandberg, A.S., Andlid, T., 2003b. Combined impact of pH and organic acids on iron uptake by Caco-2 cells. Journal of Agricultural and Food Chemistry, 51(26):7820–7824. [doi:10.1021/jf030177n]PubMedCrossRefGoogle Scholar
  197. Sandberg, A.S., Hulthen, L.R., Turk, M., 1996. Dietary Aspergillus niger phytase increases iron absorption in humans. Journal of Nutrition, 126(2):476–480.PubMedGoogle Scholar
  198. Sandberg, A.S., Brune, M., Carlsson, N.G., Hallberg, L., Skoglund, E., Rossander-Hulthen, L., 1999. Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans. American Journal of Clinical Nutrition, 70(2):240–246.PubMedGoogle Scholar
  199. Scott, J.J., 1991. Alkaline phytase activity in nonionic detergent extracts of legume seeds. Plant Physiology, 95(4):1298–1301.PubMedCrossRefGoogle Scholar
  200. Selle, P.H., Ravindran, V., 2007. Microbial phytase in poultry nutrition. Animal Feed Science and Technology, 135(1–2):1–41. [doi:10.1016/j.anifeedsci.2006.06.010]CrossRefGoogle Scholar
  201. Selvam, R., 2002. Calcium oxalate stone disease: Role of lipid peroxidation and antioxidants. Urol. Res., 30(1):35–47. [doi:10.1007/s00240-001-0228-z]PubMedCrossRefGoogle Scholar
  202. Shears, S.B., 2004. How versatile are inositol phosphate kinases? Biochemical Journal, 377(2):265–280. [doi:10.1042/BJ20031428]PubMedCrossRefGoogle Scholar
  203. Shi, J., Wang, H., Schellin, K., Li, B., Faller, M., Stoop, J.M., Meeley, R.B., Ertl, D.S., Ranch, J.P., Glassman, K., 2007. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nature Biotechnology, 25(8):930–937. [doi:10.1038/nbt1322]PubMedCrossRefGoogle Scholar
  204. Shin, S., Ha, N.C., Oh, B.C., Oh, T.K., Oh, B.H., 2001. Enzyme mechanism and catalytic property of beta propeller phytase. Structure, 9(9):851–858. [doi:10.1016/S0969-2126(01)00637-2]PubMedCrossRefGoogle Scholar
  205. Siener, R., Heynck, H., Hesse, A., 2001. Calcium-binding capacities of different brans under simulated gastrointestinal pH conditions. In vitro study with Ca-45. Journal of Agricultural and Food Chemistry, 49(9):4397–4401. [doi:10.1021/jf010381f]PubMedCrossRefGoogle Scholar
  206. Simpson, C.J., Wise, A., 1990. Binding of zinc and calcium to inositol phosphates (phytate) in vitro. British Journal of Nutrition, 64(1):225–232. [doi:10.1079/BJN19900024]PubMedCrossRefGoogle Scholar
  207. Steiner, T., Mosenthin, R., Zimmermann, B., Greiner, R., Roth, S., 2007. Distribution of phytase activity, total phosphorus and phytate phosphorus in legume seeds, cereals and cereal by-products as influenced by harvest year and cultivar. Animal Feed Science and Technology, 133(3–4):320–334. [doi:10.1016/j.anifeedsci.2006.04.007]CrossRefGoogle Scholar
  208. Stodolak, B., Starzynska, A., Czyszczon, M., Zyla, K., 2007. The effect of phytic acid on oxidative stability of raw and cooked meat. Food Chemistry, 101(3):1041–1045. [doi:10.1016/j.foodchem.2006.02.061]CrossRefGoogle Scholar
  209. Storcksdieck, S., Bonsmann, G., Hurrell, R.F., 2007. Iron-binding properties, amino acid composition, and structure of muscle tissue peptides from in vitro digestion of different meat sources. Journal of Food Science, 72(1):S019–S029. [doi:10.1111/j.1750-3841.2006.00229.x]PubMedCrossRefGoogle Scholar
  210. Strater, N., Klabunde, T., Tucker, P., Witzel, H., Krebs, B., 1995. Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)-Zn(II) active site. Science, 268(5216):1489–1492. [doi:10.1126/science.7770774]PubMedCrossRefGoogle Scholar
  211. Suzuki, U., Yoshimura, K., Takaishi, M., 1907. About the enzyme “phytase”, which splits “anhydro-oxy-methylene diphosphoric acid”. Bulletin of the College of Agriculture, Tokyo Imperial University, 7:503–512 (in German).Google Scholar
  212. Tang, J., Leung, A., Leung, C., Lim, B.L., 2006. Hydrolysis of precipitated phytate by three distinct families of phytases. Soil Biology and Biochemistry, 38(6):1316–1324. [doi:10. 1016/j.soilbio.2005.08.021]CrossRefGoogle Scholar
  213. Teucher, B., Olivares, M., Cori, H., 2004. Enhancers of iron absorption: Ascorbic acid and other organic acids. International Journal for Vitamin and Nutrition Research, 74(6):403–419. [doi:10.1024/0300-9831.74.6.403]PubMedCrossRefGoogle Scholar
  214. Thompson, D.B., Erdman, J.W., 1982. Structural model for ferric phytate—Implications for phytic acid analysis. Cereal Chemistry, 59(6):525–528.Google Scholar
  215. Thornton, C.G., Passen, S., 2004. Inhibition of PCR amplification bovine fecal specimens with by phytic acid, and treatment of phytase to reduce inhibition. Journal of Microbiological Methods, 59(1):43–52. [doi:10.1016/j.mimet.2004.06.001]PubMedCrossRefGoogle Scholar
  216. Tomlinson, R.V., Ballou, C.E., 1962. Myoinositol polyphosphate intermediates in dephosphorylation of phytic acid by phytase. Biochemistry, 1(1):166. [doi:10.1021/bi009 07a025]PubMedCrossRefGoogle Scholar
  217. Torres, J., Dominguez, S., Cerda, M.F., Obal, G., Mederos, A., Irvine, R.F., Diaz, A., Kremer, C., 2005. Solution behaviour of myo-inositol hexakisphosphate in the presence of multivalent cations. Prediction of a neutral pentainagnesium species under cytosolic/nuclear conditions. Journal of Inorganic Biochemistry, 99(3):828–840. [doi:10.1016/j.jinorgbio.2004.12.011]PubMedCrossRefGoogle Scholar
  218. Tuntawiroon, M., Sritongkul, N., Brune, M., Rossanderhulten, L., Pleehachinda, R., Suwanik, R., Hallberg, L., 1991. Dose-dependent inhibitory effect of phenolic-compounds in foods on nonheme-iron absorption in men. American Journal of Clinical Nutrition, 53(2):554–557.PubMedGoogle Scholar
  219. Turk, M., Sandberg, A.S., 1992. Phytate degradation during breadmaking—Effect of phytase addition. Journal of Cereal Science, 15(3):281–294.CrossRefGoogle Scholar
  220. Turk, M., Carlsson, N.G., Sandberg, A.S., 1996. Reduction in the levels of phytate during wholemeal bread making; Effect of yeast and wheat phytases. Journal of Cereal Science, 23(3):257–264. [doi:10.1006/jcrs.1996.0026]CrossRefGoogle Scholar
  221. Ullah, A.H.J., Sethumadhavan, K., Mullaney, E.J., Ziegelhoffer, T., ustin-Phillips, S., 1999. Characterization of recombinant fungal phytase (phyA) expressed in tobacco leaves. Biochemical and Biophysical Research Communications, 264(1):201–206. [doi:10.1006/bbrc.1999.1501]PubMedCrossRefGoogle Scholar
  222. Ullah, A.H.J., Sethumadhavan, K., Mullaney, E.J., Ziegelhoffer, T., ustin-Phillips, S., 2002. Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase. Biochemical and Biophysical Research Communications, 290(4):1343–1348. [doi:10.1006/bbrc.2002.6361]PubMedCrossRefGoogle Scholar
  223. Ullah, A.H.J., Sethumadhavan, K., Mullaney, E.J., Ziegelhoffer, T., ustin-Phillips, S., 2003. Fungal phyA gene expressed in potato leaves produces active and stable phytase. Biochemical and Biophysical Research Communications, 306(2):603–609. [doi:10.1016/S0006-291X(03)01002-7]PubMedCrossRefGoogle Scholar
  224. van Etten, R.L., Davidson, R., Stevis, P.E., MacArthur, H., Moore, D.L., 1991. Covalent structure, disulfide bonding, and identification of reactive surface and active site residues of human prostatic acid phosphatase. Journal of Biological Chemistry, 266(4):2313–2319.PubMedGoogle Scholar
  225. Vasca, E., Materazzi, S., Caruso, T., Milano, O., Fontanella, C., Manfredi, C., 2002. Complex formation between phytic acid and divalent metal ions: A solution equilibria and solid state investigation. Analytical and Bioanalytical Chemistry, 374(1):173–178. [doi:10.1007/s00216-002-1469-6]PubMedCrossRefGoogle Scholar
  226. Vats, P., Banerjee, U.C., 2004. Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): An overview. Enzyme and Microbial Technology, 35(1):3–14. [doi:10.1016/j.enzmictec.2004.03.010]CrossRefGoogle Scholar
  227. Vats, P., Bhattacharyya, M.S., Banerjee, U.C., 2005. Use of phytases (myo-inositolhexakisphosphate phosphohydrolases) for combatting environmental pollution: A biological approach. Critical Reviews in Environmental Science and Technology, 35(5):469–486. [doi:10.1080/10643380590966190]CrossRefGoogle Scholar
  228. Veide, J., Andlid, T., 2006. Improved extracellular phytase activity in Saccharomyces cerevisiae by modifications in the PHO system. International Journal of Food Microbiology, 108(1):60–67. [doi:10.1016/j.ijfoodmicro.2005.10.020]PubMedCrossRefGoogle Scholar
  229. Veiga, N., Torres, J., Dominguez, S., Mederos, A., Irvine, R.F., Diaz, A., Kremer, C., 2006. The behaviour of myo-inositol hexakisphosphate in the presence of magnesium(II) and calcium(II): Protein-free soluble InsP(6) is limited to 49 mu M under cytosolic/nuclear conditions. Journal of Inorganic Biochemistry, 100(11):1800–1810. [doi:10.1016/j.jinorgbio.2006.06.016]PubMedCrossRefGoogle Scholar
  230. Veum, T.L., Ledoux, D.R., Bollinger, D.W., Raboy, V., Cook, A., 2002. Low-phytic acid barley improves calcium and phosphorus utilization and growth performance in growing pigs. Journal of Animal Science 80(10):2663–2670.PubMedGoogle Scholar
  231. Vincent, J.B., Crowder, M.W., Averill, B.A., 1992. Hydrolysis of phosphate monoesters: A biological problem with multiple chemical solutions. Trends in Biochemical Sciences, 17(3):105–110. [doi:10.1016/0968-0004(92)90246-6]PubMedCrossRefGoogle Scholar
  232. Vohra, P., Gray, G.A., Kratzer, F.H., 1965. Phytic acid-metal complexes. Proceedings of the Society for Experimental Biology and Medicine, 120(2):447–449.PubMedGoogle Scholar
  233. Volkmann, C.J., Chateauneuf, G.M., Pradhan, J., Bauman, A.T., Brown, R.E., Murthy, P.P.N., 2002. Conformational flexibility of inositol phosphates: Influence of structural characteristics. Tetrahedron Letters, 43(27):4853–4856. [doi:10.1016/S0040-4039(02)00875-4]CrossRefGoogle Scholar
  234. Vucenik, I., Shamsuddin, A.M., 2006. Protection against cancer by dietary IP6 and inositol. Nutrition and Cancer, 55(2):109–125. [doi:10.1207/s15327914nc5502_1]PubMedCrossRefGoogle Scholar
  235. Wang, Y., Gao, X.R., Su, Q., Wu, W., An, L.J., 2007. Expression of a heat stable phytase from Aspergillus fumigatus in tobacco (Nicotiana tabacum L. cv. NC89). Indian Journal of Biochemistry and Biophysics, 44(1):26–30.CrossRefGoogle Scholar
  236. Ward, K.A., 2001. Phosphorus-friendly transgenics. Nature Biotechnology, 19(5):415–416. [doi:10.1038/88064]PubMedCrossRefGoogle Scholar
  237. WHO, 2002. Reducing Risks, Promoting Healthy Life. In: World Health Report 2002. World Health Organization, Geneva, Switzerland.Google Scholar
  238. Wise, A., Gilburt, D.J., 1983. Accessibility of trace-metals, co-precipitated with calcium phytate, to soluble chelating agents. Nutrition Research, 3(3):321–324. [doi:10.1016/S0271-5317(83)80080-3]CrossRefGoogle Scholar
  239. Wong, P.Y.Y., Kitts, D.D., 2001. An iron binding assay to measure activity of known food sequestering agents: Studies with buttermilk solids. Food Chemistry, 72(2):245–254. [doi:10.1016/S0308-8146(00)00237-5]CrossRefGoogle Scholar
  240. Worthington, M.T., Cohn, S.M., Miller, S.K., Luo, R.Q., Berg, C.L., 2001. Characterization of a human plasma membrane heme transporter in intestinal and hepatocyte cell lines. American Journal of Physiology-Gastrointestinal and Liver Physiology, 280(6):G1172–G1177.PubMedGoogle Scholar
  241. Xiang, T., Liu, Q., Deacon, A.M., Koshy, M., Kriksunov, I.A., Lei, X.G., Hao, Q., Thiel, D.J., 2004. Crystal structure of a heat-resilient phytase from Aspergillus fumigatus, carrying a phosphorylated histidine. Journal of Molecular Biology, 339(2):437–445. [doi:10.1016/j.jmb.2004.03.057]PubMedCrossRefGoogle Scholar
  242. Yeung, C.K., Glahn, R.P., Miller, D.D., 2005. Inhibition of iron uptake from iron salts and chelates by divalent metal cations in intestinal epithelial cells. Journal of Agricultural and Food Chemistry, 53(1):132–136. [doi:10.1021/jf049255c]PubMedCrossRefGoogle Scholar
  243. York, J.D., 2006. Regulation of nuclear processes by inositol polyphosphates. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1761(5–6):552–559. [doi:10.1016/j.bbalip.2006.04.014]CrossRefGoogle Scholar
  244. York, J.D., Odom, A.R., Murphy, R., Ives, E.B., Wente, S.R., 1999. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science, 285(5424):96–100. [doi:10.1126/science.285.5424.96]PubMedCrossRefGoogle Scholar
  245. Zimmermann, M.B., Hurrell, R.F., 2002. Improving iron, zinc and vitamin A nutrition through plant biotechnology. Current Opinion in Biotechnology, 13(2):142–145. [doi:10.1016/S0958-1669(02)00304-X]PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University Press 2008

Authors and Affiliations

  • Lisbeth Bohn
    • 1
  • Anne S. Meyer
    • 2
  • Søren. K. Rasmussen
    • 1
    Email author
  1. 1.Department of Agricultural Sciences, Faculty of Life SciencesUniversity of CopenhagenFrederiksberg CDenmark
  2. 2.Department of Chemical EngineeringTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations