Skip to main content
Log in

Advanced ocean wave energy harvesting: current progress and future trends

先进海洋波浪能采集: 当前进展和未来趋势

  • Review
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

With a transition towards clean and low-carbon renewable energy, against the backdrop of the fossil-energy crisis and rising pollution, ocean energy has been proposed as a significant possibility for mitigating climate change and energy shortages for its characteristics of clean, renewable, and abundant. The rapid development of energy harvesting technology has led to extensive applications of ocean wave energy, which, however, has faced certain challenges due to the low-frequency and unstable nature of ocean waves. This paper overviews the debut and development of ocean wave energy harvesting technology, and discusses the potential and application paradigm for energy harvesting in the “intelligent ocean.” We first describe for readers the mechanisms and applications of traditional wave energy converters, and then discuss current challenges in energy harvesting performance connected to the characteristics of ocean waves. Next, we summarize the progress in wave energy harvesting with a focus on advanced technologies (e.g., data-driven design and optimization) and multifunctional energy materials (e.g., triboelectric metamaterials), and finally propose recommendations for future development.

概要

在化石能源危机和环境污染加剧的背景下, 能源产业正在向着清洁低碳方向转变。海洋能有望成为缓解气候变 化和能源短缺的重要能量来源。波浪能是海洋能的重要组成部分。然而由于波浪的低频和不稳定性, 其采集存 在一定技术挑战。本文通过梳理波浪能转换装置的基本机理与主要应用, 讨论现有波浪能采集技术的瓶颈与挑 战; 通过引入近年来出现的数据驱动结构优化等先进设计技术和摩擦电超材料等新型电学功能材料, 提出波浪 能采集技术的可能解决方案和未来发展方向, 并讨论和展望能量采集在“智慧海洋”中的应用潜力和应用范式。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 52022092, 51979247, and 52211530092), the Talent Program of Zhejiang Province (No. 2021R52050), the Key Research and Development Plan of Zhejiang Province, China (Nos. 2021C03181 and 2023C03122), and the Key-Area Research and Development Program of Guangdong Province (No. 2021B0707030002), China. Pengcheng JIAO acknowledges the Startup Fund of the Hundred Talent Program at Zhejiang University, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang He  (何方) or Pengcheng Jiao  (焦鹏程).

Additional information

Author contributions

Fang HE: conceptualization, methodology, writing-review & editing, resources, supervision, and funding acquisition. Yibei LIU: formal analysis, investigation, and writing-original draft. Jiapeng PAN: writing-original draft and visualization. Xinghong YE: writing-original draft and visualization. Pengcheng JIAO: conceptualization, methodology, writing-review & editing, supervision, and funding acquisition.

Conflict of interest

Fang HE, Yibei LIU, Jiapeng PAN, Xinghong YE, and Pengcheng JIAO declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, F., Liu, Y., Pan, J. et al. Advanced ocean wave energy harvesting: current progress and future trends. J. Zhejiang Univ. Sci. A 24, 91–108 (2023). https://doi.org/10.1631/jzus.A2200598

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A2200598

Key words

关键词

Navigation