Skip to main content

A comparative study of methods for remediation of diesel-contaminated soil

石油污染土壤修复技术对比性研究

Abstract

Soil pollution by diesel fuels is a worldwide environmental problem, but little research has been carried out into on-site techniques for remediation of soil polluted by waste solvents. This study compared chemical oxidation and soil washing methods for their efficiency and environmental and economic impacts. Soil was spiked with 0# diesel to simulate an actual pollution level of about 1260 mg/kg total petroleum hydrocarbon (TPH). Fenton-like oxidation eliminated 90.4% of the TPH with a Fe2+:H2O2 ratio of 1:10 in 5 d compared with 25.8% removal by the activated persulfate method under the same conditions. In washing tests, sodium dodecylbenzenesulfonate and Tween 80 were both unsuitable for TPH washing, while ultrapure water removed 36.1% of TPH in 75 min. Only the Fenton-like oxidation technique met remediation goals based on the screening values of the Guideline for Risk Assessment of Contaminated Sites. The environmental impact and economic assessment of techniques demonstrated the superiority of water washing for dealing with low-degree TPH contamination.

概要

目的

筛选出适合低程度(<916 mg/kg)石油烃污染土的修复技术.

创新点

选用实际废溶剂污染土作为研究对象, 使用两种经典原位修复技术(化学氧化/淋洗), 并结合效果、 环境友好性和经济性三个方面, 对该类土壤的修复提出经济性建议.

方法

1. 采用控制变量法, 分别改变试剂浓度、 剂量和配比, 并控制其他因素不变, 以探究不同因素对石油烃去除效果的影响; 2. 采用单因素方差分析, 分析数据之间的显著性, 得出各种方法的最佳条件.

结论

1. 类芬顿氧化技术适用于石油烃高污染土壤的修复, 而石油烃低污染程度(<916 mg/kg)的土壤仅用水洗法即可达到修复效果. 2. 从施加修复技术对环境的影响、 生态毒性和可生物降解性等方面考虑, 活化过硫酸盐法和水洗法最适用于该污染场地的修复.

This is a preview of subscription content, access via your institution.

References

  1. Alef K, 1991. Methodenhandbuch Bodenmikrobiologie: Aktivitaten, Biomasse, Differenzierung. Ecomed, Landsberg/Lech, Germany.

    Google Scholar 

  2. Bahadure S, Kalia R, Chavan R, 2013. Comparative study of bioremediation of hydrocarbon fuels. International Journal of Biotechnology and Bioengineering Research, 4(7):677–686.

    Google Scholar 

  3. Befkadu AA, Chen QY, 2018. Surfactant-enhanced soil washing for removal of petroleum hydrocarbons from contaminated soils: a review. Pedosphere, 28(3):383–410. https://doi.org/10.1016/S1002-0160(18)60027-X

    Article  Google Scholar 

  4. Bruell CJ, Ryan DK, Barker CC, et al., 1997. Laboratory evaluation of a biodegradable surfactant for in situ soil flushing. Journal of Soil Contamination, 6(5):509–523. https://doi.org/10.1080/15320389709383583

    Article  Google Scholar 

  5. Büyüksönmez F, Hess TF, Crawford RL, et al., 1998. Toxic effects of modified Fenton reactions on Xanthobacter flavus FB71. Applied and Environmental Microbiology, 64(10):3759–3764. https://doi.org/10.1128/AEM.64.10.3759-3764.1998

    Article  Google Scholar 

  6. Chen HT, Reinhard M, Nguyen VT, et al., 2016. Reversible and irreversible sorption of perfluorinated compounds (PFCs) by sediments of an urban reservoir. Chemosphere, 144:1747–1753. https://doi.org/10.1016/jxhemosphere.2015.10.055

    Article  Google Scholar 

  7. Chen LS, Sun YF, Rasli A, et al., 2013. A theoretical framework for the impact of urbanization on labor cost in China. Proceedings of the 20th International Conference on Management Science and Engineering, p.1047–1053. https://doi.org/10.1109/ICMSE.2013.6586407

  8. Chen T, Sun CX, 2016. Polychlorinated biphenyls-contaminated soil washing with mixed surfactants enhanced by electrokinetics. Chemical Research in Chinese Universities, 32(2):261–267. https://doi.org/10.1007/s40242-016-5369-2

    Article  Google Scholar 

  9. Cheng M, Zeng GM, Huang DL, et al., 2018. Tween 80 surfactant-enhanced bioremediation: toward a solution to the soil contamination by hydrophobic organic compounds. Critical Reviews in Biotechnology, 38(1):17–30. https://doi.org/10.1080/07388551.2017.1311296

    Article  Google Scholar 

  10. de Laat J, Gallard H, 1999. Catalytic decomposition of hydrogen peroxide by Fe (III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environmental Science & Technology, 33(16):2726–2732. https://doi.org/10.1021/es981171v

    Article  Google Scholar 

  11. Dos Santos EV, Sáez C, Cañizares P, et al., 2017. Treatment of ex-situ soil-washing fluids polluted with petroleum by anodic oxidation, photolysis, sonolysis and combined approaches. Chemical Engineering Journal, 310:581–588. https://doi.org/10.1016/j.cej.2016.05.015

    Article  Google Scholar 

  12. Du YX, Zhou MH, Lei LC, 2007. Kinetic model of 4-CP degradation by Fenton/O2 system. Water Research, 41(5): 1121–1133. https://doi.org/10.1016/j.watres.2006.11.038

    Article  Google Scholar 

  13. Farzadkia M, Dehghani M, Moafian M, 2014. The effects of Fenton process on the removal of petroleum hydrocarbons from oily sludge in Shiraz oil refinery, Iran. Journal of Environmental Health Science and Engineering, 12(1): 31. https://doi.org/10.1186/2052-336X-12-31

    Article  Google Scholar 

  14. Franzetti A, Di Gennaro P, Bevilacqua A, et al., 2006. Environmental features of two commercial surfactants widely used in soil remediation. Chemosphere, 62(9):1474–1480. https://doi.org/10.1016/j.chemosphere.2005.06.009

    Article  Google Scholar 

  15. Gao YZ, Ling WT, Zhu LZ, et al., 2007. Surfactant-enhanced phytoremediation of soils contaminated with hydrophobic organic contaminants: potential and assessment. Pedosphere, 17(4):409–418. https://doi.org/10.1016/S1002-0160(07)60050-2

    Article  Google Scholar 

  16. García MT, Campos E, Marsal A, et al., 2009. Biodegradability and toxicity of sulphonate-based surfactants in aerobic and anaerobic aquatic environments. Water Research, 43(2):295–302. https://doi.org/10.1016/j.watres.2008.10.016

    Article  Google Scholar 

  17. Gardner KH, Arias MS, 2000. Clay swelling and formation permeability reductions induced by a nonionic surfactant. Environmental Science and Technology, 34(1):160–166. https://doi.org/10.1021/es990676y

    Article  Google Scholar 

  18. Garon D, Krivobok S, Wouessidjewe D, et al., 2002. Influence of surfactants on solubilization and fungal degradation of fluorene. Chemosphere, 47(3):303–309. https://doi.org/10.1016/S0045-6535(01)00299-5

    Article  Google Scholar 

  19. Gogoi SB, 2011. Adsorption-desorption of surfactant for enhanced oil recovery. Transport in Porous Media, 90(2): 589–604. https://doi.org/10.1007/s11242-011-9805-y

    Article  Google Scholar 

  20. Goi A, Trapido M, 2004. Degradation of polycyclic aromatic hydrocarbons in soil: the Fenton reagent versus ozonation. Environmental Technology, 25(2):155–164. https://doi.org/10.1080/09593330409355448

    Article  Google Scholar 

  21. Gojgic-Cvijovic GD, Milic JS, Solevic TM, et al., 2012. Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: a laboratory study. Biodegradation, 23(1):1–14. https://doi.org/10.1007/s10532-011-9481-1

    Article  Google Scholar 

  22. González S, Petrovic M, Barceló D, 2007. Removal of a broad range of surfactants from municipal wastewater-comparison between membrane bioreactor and conventional activated sludge treatment. Chemosphere, 67(2): 335–343. https://doi.org/10.1016/j.chemosphere.2006.09.056

    Article  Google Scholar 

  23. Gracida J, Ortega-Ortega J, Torres B LG, et al., 2017. Synthesis of anionic surfactant and their application in washing of oil-contaminated soil. Journal of Surfactants and Detergents, 20(2):493–502. https://doi.org/10.1007/s11743-017-1926-z

    Article  Google Scholar 

  24. Guo HQ, Liu ZY, Yang SG, et al., 2009. The feasibility of enhanced soil washing of p-nitrochlorobenzene (pNCB) with SDBS/Tween80 mixed surfactants. Journal of Hazardous Materials, 170(2–3):1236–1241. https://doi.org/10.1016/j.jhazmat.2009.05.101

    Article  Google Scholar 

  25. Guo P, Chen WW, Li YM, et al., 2014. Selection of surfactant in remediation of DDT-contaminated soil by comparison of surfactant effectiveness. Environmental Science and Pollution Research, 21(2):1370–1379. https://doi.org/10.1007/s11356-013-1993-2

    Article  Google Scholar 

  26. Guo SH, Fan RJ, Li TT, et al., 2014. Synergistic effects of bioremediation and electrokinetics in the remediation of petroleum-contaminated soil. Chemosphere, 109:226–233. https://doi.org/10.1016/j.chemosphere.2014.02.007

    Article  Google Scholar 

  27. Haggensen F, Mogensen AS, Angelidaki I, et al., 2002. Anaerobic treatment of sludge: focusing on reduction of LAS concentration in sludge. Water Science and Technology, 46(10):159–165. https://doi.org/10.2166/wst.2002.0318

    Article  Google Scholar 

  28. Hernández-Espriú A, Sánchez-León E, Martínez-Santos P, et al., 2013. Remediation of a diesel-contaminated soil from a pipeline accidental spill: enhanced biodegradation and soil washing processes using natural gums and surfactants. Journal of Soils and Sediments, 13(1):152–165. https://doi.org/10.1007/s11368-012-0599-5

    Article  Google Scholar 

  29. Holmstrup M, Krogh PH, 1996. Effects of an anionic surfactant, linear alkylbenzene sulfonate, on survival, reproduction and growth of the soil-living collembolan Folsomia fimetaria. Environmental Toxicology and Chemistry, 15(10):1745–1748. https://doi.org/10.1002/etc.5620151013

    Google Scholar 

  30. Huang JH, Peng L, Zeng GM, et al., 2014. Evaluation of micellar enhanced ultrafiltration for removing methylene blue and cadmium ion simultaneously with mixed surfactants. Separation and Purification Technology, 125: 83–89. https://doi.org/10.1016/j.seppur.2014.01.020

    Article  Google Scholar 

  31. Huguenot D, Mousset E, van Hullebusch ED, et al., 2015. Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons. Journal of Environmental Management, 153:40–47. https://doi.org/10.1016/j.jenvman.2015.01.037

    Article  Google Scholar 

  32. Jamialahmadi N, Gitipour S, Jamialahmadi O, et al., 2015. Remediation of a diesel-contaminated soil using a Fenton-like advanced oxidation process: optimization by response surface methodology. Soil and Sediment Contamination: An International Journal, 24(6):609–623. https://doi.org/10.1080/15320383.2015.996633

    Article  Google Scholar 

  33. Kang S, Jeong HY, 2015. Sorption of a nonionic surfactant Tween 80 by minerals and soils. Journal of Hazardous Materials, 284:143–150. https://doi.org/10.1016/j.jhazmat.2014.11.010

    Article  Google Scholar 

  34. Khalladi R, Benhabiles O, Bentahar F, et al., 2009. Surfactant remediation of diesel fuel polluted soil. Journal of Hazardous Materials, 164(2–3):1179–1184. https://doi.org/10.1016/j.jhazmat.2008.09.024

    Article  Google Scholar 

  35. Khan FI, Husain T, Hejazi R, 2004. An overview and analysis of site remediation technologies. Journal of Environmental Management, 71(2):95–122. https://doi.org/10.1016/j.jenvman.2004.02.003

    Article  Google Scholar 

  36. Kirk JL, Klironomos JN, Lee H, et al., 2005. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environmental Pollution, 133(3):455–465. https://doi.org/10.1016/j.envpol.2004.06.002

    Article  Google Scholar 

  37. Lai CC, Huang YC, Wei YH, et al., 2009. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. Journal of Hazardous Materials, 167(1–3):609–614. https://doi.org/10.1016/j.jhazmat.2009.01.017

    Article  Google Scholar 

  38. Lee DH, Chang HW, Cody RD, 2004. Synergism effect of mixed surfactant solutions in remediation of soil contaminated with PCE. Geosciences Journal, 8(3):319–323. https://doi.org/10.1007/BF02910251

    Article  Google Scholar 

  39. Li G, Guo SH, Hu JX, 2016. The influence of clay minerals and surfactants on hydrocarbon removal during the washing of petroleum-contaminated soil. Chemical Engineering Journal, 286:191–197. https://doi.org/10.1016/j.cej.2015.10.006

    Article  Google Scholar 

  40. Li R, Munoz G, Liu YN, et al., 2019. Transformation of novel polyfluoroalkyl substances (PFASs) as co-contaminants during biopile remediation of petroleum hydrocarbons. Journal of Hazardous Materials, 362:140–147. https://doi.org/10.1016/j.jhazmat.2018.09.021

    Article  Google Scholar 

  41. Li XX, Fan FQ, Zhang BY, et al., 2018. Biosurfactant enhanced soil bioremediation of petroleum hydrocarbons: design of experiments (DOE) based system optimization and phospholipid fatty acid (PLFA) based microbial community analysis. International Biodeterioration & Biodegradation, 132:216–225. https://doi.org/10.1016/j.ibiod.2018.04.009

    Article  Google Scholar 

  42. Liang CJ, Su HW, 2009. Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Industrial & Engineering Chemistry Research, 48(11):5558–5562. https://doi.org/10.1021/ie9002848

    Article  Google Scholar 

  43. Lin SS, Gurol MD, 1998. Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications. Environmental Science & Technology, 32(10): 1417–1423. https://doi.org/10.1021/es970648k

    Article  Google Scholar 

  44. Lominchar MA, Santos A, de Miguel E, et al., 2018. Remediation of aged diesel contaminated soil by alkaline activated persulfate. Science of the Total Environment, 622–623:41–48. https://doi.org/10.1016/j.scitotenv.2017.11.263

    Article  Google Scholar 

  45. Meng QY, Gao ZC, Pan GX, et al., 2016. Soil layer displacing plough-part 3: black and brown soils. Engineering in Agriculture, Environment and Food, 9(1):79–83. https://doi.org/10.1016/j.eaef.2015.04.005

    Article  Google Scholar 

  46. Mirzaee E, Gitipour S, Mousavi M, et al., 2017. Optimization of total petroleum hydrocarbons removal from Mahshahr contaminated soil using magnetite nanoparticle catalyzed Fenton-like oxidation. Environmental Earth Sciences, 76(4):165. https://doi.org/10.1007/s12665-017-6484-1

    Article  Google Scholar 

  47. Moreira GA, Micheloud GA, Beccaria AJ, et al., 2007. Optimization of the Bacillus thuringiensis var. kurstaki HD-1 δ-endotoxins production by using experimental mixture design and artificial neural networks. Biochemical Engineering Journal, 35(1):48–55. https://doi.org/10.1016/j.bej.2006.12.025

    Article  Google Scholar 

  48. Mungray AK, Kumar P, 2008. Anionic surfactants in treated sewage and sludges: risk assessment to aquatic and terrestrial environments. Bioresource Technology, 99(8): 2919–2929. https://doi.org/10.1016/j.biortech.2007.06.025

    Article  Google Scholar 

  49. Ni HW, Zhou WJ, Zhu LZ, 2014. Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-Tween 80 mixed surfactants. Journal of Environmental Sciences, 26(5):1071–1079. https://doi.org/10.1016/S1001-0742(13)60535-5

    Article  Google Scholar 

  50. Osgerby IT, 2006. ISCO technology overview: do you really understand the chemistry? In: Calabrese EJ, Kostecki PT, Dragun J (Eds.), Contaminated Soils, Sediments and Water. Springer, Boston, USA, p.287–308. https://doi.org/10.1007/0-387-28324-2_19

    Chapter  Google Scholar 

  51. Österreicher-Cunha P, do Amaral VargasJr E, Guimarães JRD, et al., 2004. Evaluation of bioventing on a gasoline-ethanol contaminated undisturbed residual soil. Journal of Hazardous Materials, 110(1–3):63–76. https://doi.org/10.1016/j.jhazmat.2004.02.037

    Article  Google Scholar 

  52. Palmroth MRT, Langwaldt JH, Aunola TA, et al., 2006. Effect of modified Fenton’s reaction on microbial activity and removal of PAHs in creosote oil contaminated soil. Biodegradation, 17(2):29–39. https://doi.org/10.1007/s10532-005-6060-3

    Article  Google Scholar 

  53. Patowary R, Patowary K, Kalita MC, et al., 2018. Application of biosurfactant for enhancement of bioremediation process of crude oil contaminated soil. International Biodeterioration & Biodegradation, 129:50–60. https://doi.org/10.1016/j.ibiod.2018.01.004

    Article  Google Scholar 

  54. Picard F, Chaouki J, 2017. NaClO/NaOH soil oxidation for the remediation of two real heavy-metal and petroleum contaminated soils. Journal of Environmental Chemical Engineering, 5(3):2691–2698. https://doi.org/10.1016/j.jece.2017.05.005

    Article  Google Scholar 

  55. Quality and Technology Supervision Bureau of Zhejiang Province, 2013. Guideline for Risk Assessment of Contaminated Sites, DB 33/T 892-2013. Quality and Technology Supervision Bureau of Zhejiang Province, China (in Chinese).

    Google Scholar 

  56. Samaksaman U, Peng TH, Kuo JH, et al., 2016. Thermal treatment of soil co-contaminated with lube oil and heavy metals in a low-temperature two-stage fluidized bed incinerator. Applied Thermal Engineering, 93:131–138. https://doi.org/10.1016/j.applthermaleng.2015.09.024

    Article  Google Scholar 

  57. Satapanajaru T, Chokejaroenrat C, Sakulthaew C, et al., 2017. Remediation and restoration of petroleum hydrocarbon containing alcohol-contaminated soil by persulfate oxidation activated with soil minerals. Water, Air, & Soil Pollution, 228(9):345. https://doi.org/10.1007/s11270-017-3527-x

    Article  Google Scholar 

  58. Shi ZT, Chen JJ, Liu JF, et al., 2015. Anionic-nonionic mixed-surfactant-enhanced remediation of PAH-contaminated soil. Environmental Science and Pollution Research, 22(16):12769–12774. https://doi.org/10.1007/s11356-015-4568-6

    Article  Google Scholar 

  59. Stroo HF, Ward CH, 2011. A Volume in SERDP/ESTCP Remediation Technology Monograph Series, In Situ Chemical Oxidation for Remediation of Contaminated Groundwater. Springer Science and Business Media, New York, USA.

    Google Scholar 

  60. Usman M, Faure P, Hanna K, et al., 2012a. Application of magnetite catalyzed chemical oxidation (Fenton-like and persulfate) for the remediation of oil hydrocarbon contamination. Fuel, 96:270–276. https://doi.org/10.1016/j.fuel.2012.01.017

    Article  Google Scholar 

  61. Usman M, Faure P, Ruby C, et al., 2012b. Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils. Chemosphere, 87(3):234–240. https://doi.org/10.1016/j.chemosphere.2012.01.001

    Article  Google Scholar 

  62. Usman M, Faure P, Ruby C, et al., 2012c. Remediation of PAH-contaminated soils by magnetite catalyzed Fenton-like oxidation. Applied Catalysis B: Environmental, 117–118:10–17. https://doi.org/10.1016/j.apcatb.2012.01.007

    Article  Google Scholar 

  63. Wu YY, Zhou SQ, Qin FH, et al., 2010. Modeling physical and oxidative removal properties of Fenton process for treatment of landfill leachate using response surface methodology (RSM). Journal of Hazardous Materials, 180(1–3):456–465. https://doi.org/10.1016/j.jhazmat.2010.04.052

    Article  Google Scholar 

  64. Yang GP, Chen Q, Li XX, et al., 2010. Study on the sorption behaviors of Tween-80 on marine sediments. Chemosphere, 79(11):1019–1025. https://doi.org/10.1016/j.chemosphere.2010.03.063

    Article  Google Scholar 

  65. Yang K, Zhu LZ, Xing BS, 2006. Enhanced soil washing of phenanthrene by mixed solutions of TX100 and SDBS. Environmental Science & Technology, 40(13):4274–4280. https://doi.org/10.1021/es060122c

    Article  Google Scholar 

  66. Yap CL, Gan SY, Ng HK, 2011. Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere, 83(11):1414–1430. https://doi.org/10.1016/j.chemosphere.2011.01.026

    Article  Google Scholar 

  67. Yen CH, Chen KF, Kao CM, et al., 2011. Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: feasibility and comparison with common oxidants. Journal of Hazardous Materials, 186(2–3):2097–2102. https://doi.org/10.1016/j.jhazmat.2010.12.129

    Article  Google Scholar 

  68. Yu HS, Zhu LZ, Zhou WJ, 2007. Enhanced desorption and biodegradation of phenanthrene in soil-water systems with the presence of anionic-nonionic mixed surfactants. Journal of Hazardous Materials, 142(1–2):354–361. https://doi.org/10.1016/j.jhazmat.2006.08.028

    Article  Google Scholar 

  69. Zhang P, Liu Y, Li ZJ, et al., 2018. Sorption and desorption characteristics of anionic surfactants to soil sediments. Chemosphere, 211:1183–1192. https://doi.org/10.1016/j.chemosphere.2018.08.051

    Article  Google Scholar 

  70. Zhou DN, Zhang H, Chen L, 2015. Sulfur-replaced Fenton systems: can sulfate radical substitute hydroxyl radical for advanced oxidation technologies? Journal of Chemical Technology and Biotechnology, 90(5):775–779. https://doi.org/10.1002/jctb.4525

    Article  Google Scholar 

  71. Zhou WJ, Zhu LZ, 2007. Enhanced desorption of phenanthrene from contaminated soil using anionic/nonionic mixed surfactant. Environmental Pollution, 147(2):350–357. https://doi.org/10.1016/j.envpol.2006.05.025

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dao-hui Lin.

Additional information

Project supported by the Science and Technology Research Program of Zhejiang Province (No. 2020C03011), the National Natural Science Foundation of China (No. 21621005), and the National Key Research and Development Program of China (No. 2017YFA0207003)

Contributors

Fan-xu MENG and Dao-hui LIN designed the research. Fan-xu MENG and Yan SONG conducted the experiments. Li-juan MAO provided the instrumental analysis method. Wen-jun ZHOU helped to organize the manuscript. Dao-hui LIN revised and edited the final version.

Conflict of interest

Fan-xu MENG, Yan SONG, Li-juan MAO, Wen-jun ZHOU, and Dao-hui LIN declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meng, Fx., Song, Y., Mao, Lj. et al. A comparative study of methods for remediation of diesel-contaminated soil. J. Zhejiang Univ. Sci. A 22, 792–804 (2021). https://doi.org/10.1631/jzus.A2100087

Download citation

Key words

  • Total petroleum hydrocarbon (TPH)
  • Chemical oxidation
  • Soil washing
  • Environmental risk
  • Soil remediation

CLC number

  • X53

关键词

  • 总石油烃
  • 化学氧化
  • 土壤淋洗
  • 土壤淋洗
  • 环境风险
  • 土壤修复