Skip to main content

A novel time-span input neural network for accurate municipal solid waste incineration boiler steam temperature prediction

一种新型时域输入神经网络实现垃圾焚烧锅炉主蒸汽温度的精准预测

Abstract

A novel time-span input neural network was developed to accurately predict the trend of the main steam temperature of a 750-t/d waste incineration boiler. Its historical operating data were used to retrieve sensitive parameters for the boiler output steam temperature by correlation analysis. Then, the 15 most sensitive parameters with specified time spans were selected as neural network inputs. An external testing set was introduced to objectively evaluate the neural network prediction capability. The results show that, compared with the traditional prediction method, the time-span input framework model can achieve better prediction performance and has a greater capability for generalization. The maximum average prediction error can be controlled below 0.2 °C and 1.5 °C in the next 60 s and 5 min, respectively. In addition, setting a reasonable terminal training threshold can effectively avoid overfitting. An importance analysis of the parameters indicates that the main steam temperature and the average temperature around the high-temperature superheater are the two most important variables of the input parameters; the former affects the overall prediction and the latter affects the long-term prediction performance.

概要

目的

生活垃圾焚烧炉主蒸汽温度为炉内燃烧调控的重点监控对象. 本文旨在建立一种时域输入的主蒸汽温度神经网络预测模型, 以实现主蒸汽温度未来5 min变化趋势的精准预测, 并且使预测误差控制在1%以内.

创新点

1. 实现了主蒸汽温度的未来趋势预测, 而非当前值预测; 趋势预测的结果能提供操作人员一定的参考价值. 2. 提出了一种时域输入神经网络模型; 该模型能够包含输入输出参数之间的延时特性, 因此能获得更高的预测精度.

方法

1. 通过数据相关性分析与延时性分析, 确定用于预测主蒸汽温度的输入变量, 并减少模型输入层数据维度(表1);2. 提出时域输入算法设计(公式(4)~(5)), 构建时域输入主蒸汽温度神经网络预测模型, 以实现主蒸汽温度未来5 min变化趋势的精准预测(图8);3. 通过调整模型参数, 优化模型结构;4. 通过输入数据敏感度分析, 得出对主蒸汽温度预测影响最大的变量(图14).

结论

1. 本文提出的时域输入神经网络模型比传统神经网络模型的预测精度更高; 2. 时域输入主蒸汽温度神经网络预测模型在未来1 min内可以实现近零预测误差; 3. 根据输入数据敏感度分析可得, 对于本研究的焚烧炉, 主蒸汽温度本身的数据对于其预测的重要性最高; 其次, 高温过热器烟气平均温度对于主蒸汽温度远未来预测的重要性较高.

This is a preview of subscription content, access via your institution.

References

  1. Al Shamisi MH, Assi AH, Hejase HAN, 2011. Using MATLAB to develop artificial neural network models for predicting global solar radiation in Al Ain city-UAE. In: Assi AH (Ed.), Engineering Education and Research Using MATLAB. InTech, Rijeka, Croatia.

    Google Scholar 

  2. Bao CL, Zhang JF, 2013. Combustion optimization of power plant boilers based on RBF neural network model. Power Equipment, 27(2):97–100 (in Chinese). https://doi.org/10.3969/jissn.1671-086X.2013.02.007

    Google Scholar 

  3. Basheer IA, Hajmeer M, 2000. Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1):3–31. https://doi.org/10.1016/S0167-7012(00)00201-3

    Article  Google Scholar 

  4. Bukovský I, Kolovratník M, 2012. A neural network model for predicting NOx at the Mělník 1. Acta Polytechnica, 52(3):17–22. https://doi.org/10.14311/1538

    Article  Google Scholar 

  5. Chavan PD, Sharma T, Mall BK, et al., 2012. Development of data-driven models for fluidized-bed coal gasification process. Fuel, 93:44–51. https://doi.org/10.1016/j.fuel.2011.11.039

    Article  Google Scholar 

  6. Chen DZ, Christensen TH, 2010. Life-cycle assessment (EASEWASTE) of two municipal solid waste incineration technologies in China. Waste Management & Research, 28(6):508–519. https://doi.org/10.1177/0734242X10361761

    Article  Google Scholar 

  7. Golgiyaz S, Talu MF, Onat C, 2019. Artificial neural network regression model to predict flue gas temperature and emissions with the spectral norm of flame image. Fuel, 255:115827. https://doi.org/10.1016/j.fuel.2019.115827

    Article  Google Scholar 

  8. Han L, Zhang ZY, 2012. The application of immune genetic algorithm in main steam temperature of PID control of BP network. Physics Procedia, 24:80–86. https://doi.org/10.1016/j.phpro.2012.02.013

    Article  Google Scholar 

  9. Iliyas SA, Elshafei M, Habib MA, et al., 2013. RBF neural network inferential sensor for process emission monitoring. Control Engineering Practice, 21(7):962–970. https://doi.org/10.1016/j.conengprac.2013.01.007

    Article  Google Scholar 

  10. Kabugo JC, Jämsä-Jounela SL, Schiemann R, et al., 2020. Industry 4.0 based process data analytics platform: a waste-to-energy plant case study. International Journal of Electrical Power & Energy Systems, 115:105508. https://doi.org/10.1016/j.ijepes.2019.105508

    Article  Google Scholar 

  11. Kalogirou SA, 2000. Applications of artificial neural-networks for energy systems. Applied Energy, 67(1–2):17–35. https://doi.org/10.1016/S0306-2619(00)00005-2

    Article  Google Scholar 

  12. Liukkonen M, Hiltunen T, Hälikkä E, et al., 2011. Modeling of the fluidized bed combustion process and NOx emissions using self-organizing maps: an application to the diagnosis of process states. Environmental Modelling & Software, 26(5):605–614. https://doi.org/10.1016/j.envsoft.2010.12.002

    Article  Google Scholar 

  13. Meher SK, Behera SK, Kim MC, et al., 2015. Multiple decision expert systems for performance analysis of a boiler system. Applied Artificial Intelligence, 29(9):839–858. https://doi.org/10.1080/08839514.2015.1082279

    Article  Google Scholar 

  14. National Bureau of Statistics, 2018. China Statistical Yearbook 2018. China Statistics Press, Beijing, China (in Chinese).

    Google Scholar 

  15. Norhayati I, Rashid M, 2018. Adaptive neuro-fuzzy prediction of carbon monoxide emission from a clinical waste incineration plant. Neural Computing and Applications, 30(10):3049–3061. https://doi.org/10.1007/s00521-017-2921-z

    Article  Google Scholar 

  16. Oko E, Wang MH, Zhang J, 2015. Neural network approach for predicting drum pressure and level in coal-fired sub-critical power plant. Fuel, 151:139–145. https://doi.org/10.1016/j.fuel.2015.01.091

    Article  Google Scholar 

  17. Olden JD, Jackson DA, 2002. Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling, 154(1–2):135–150. https://doi.org/10.1016/S0304-3800(02)00064-9

    Article  Google Scholar 

  18. Pai TY, Lo HM, Wan TJ, et al., 2015. Predicting air pollutant emissions from a medical incinerator using grey model and neural network. Applied Mathematical Modelling, 39(5–6):1513–1525. https://doi.org/10.1016/j.apm.2014.09.017

    Article  Google Scholar 

  19. Shaha AP, Singamsetti MS, Tripathy BK, et al., 2020. Performance prediction and interpretation of a refuse plastic fuel fired boiler. IEEE Access, 8:117467–117482. https://doi.org/10.1109/access.2020.3004156

    Article  Google Scholar 

  20. Shapiro-Bengtsen S, Andersen FM, Münster M, et al., 2020. Municipal solid waste available to the Chinese energy sector-provincial projections to 2050. Waste Management, 112:52–65. https://doi.org/10.1016/j.wasman.2020.05.014

    Article  Google Scholar 

  21. Smrekar J, Potočnik P, Senegačnik A, 2013. Multi-step-ahead prediction of NOx emissions for a coal-based boiler. Applied Energy, 106:89–99. https://doi.org/10.1016/j.apenergy.2012.10.056

    Article  Google Scholar 

  22. Srivastava N, Hinton G, Krizhevsky A, et al., 2014. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):1929–1958.

    MathSciNet  MATH  Google Scholar 

  23. Sung AH, 1998. Ranking importance of input parameters of neural networks. Expert Systems with Applications, 15(3–4):405–411. https://doi.org/10.1016/S0957-4174(98)00041-4

    Article  Google Scholar 

  24. Tóth P, Garami A, Csordás B, 2017. Image-based deep neural network prediction of the heat output of a step-grate biomass boiler. Applied Energy, 200:155–169. https://doi.org/10.1016/j.apenergy.2017.05.080

    Article  Google Scholar 

  25. Tzafestas SG, Dalianis PJ, Anthopoulos G, 1996. On the overtraining phenomenon of backpropagation neural networks. Mathematics and Computers in Simulation, 40(5–6):507–521. https://doi.org/10.1016/0378-4754(95)00003-8

    Article  Google Scholar 

  26. You HH, Ma ZY, Tang YJ, et al., 2017. Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators. Waste Management, 68:186–197. https://doi.org/10.1016/j.wasman.2017.03.044

    Article  Google Scholar 

  27. Zhao M, Yan WJ, Zheng J, 2010. Combustion optimization modelling for utility boilers based on generalized dynamic fuzzy neural networks. Thermal Power Generation, 39(3):19–22 (in Chinese).

    Google Scholar 

  28. Zhou H, Meng AH, Long YQ, et al., 2014. An overview of characteristics of municipal solid waste fuel in China: physical, chemical composition and heating value. Renewable and Sustainable Energy Reviews, 36:107–122. https://doi.org/10.1016/j.rser.2014.04.024

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qun-xing Huang.

Additional information

Project supported by the National Key Research and Development Program of China (No. 2018YFC1901300) and the Research Project of Multi-data Fusion and Strategy of Intelligent Control and Optimization for Large Scale Industrial Combustion System, China

Contributors

Qin-xuan HU designed the research and wrote the first draft of the manuscript. Ji-sheng LONG, Li BAI, and Hai-liang DU provided the data and studied the structure of the furnace. Shou-kang WANG and Jun-jie HE helped to process the corresponding data. Qun-xing HUANG revised and edited the final version.

Conflict of interest

Qin-xuan HU, Ji-sheng LONG, Shou-kang WANG, Jun-jie HE, Li BAI, Hai-liang DU, and Qun-xing HUANG declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, Qx., Long, Js., Wang, Sk. et al. A novel time-span input neural network for accurate municipal solid waste incineration boiler steam temperature prediction. J. Zhejiang Univ. Sci. A 22, 777–791 (2021). https://doi.org/10.1631/jzus.A2000529

Download citation

Key words

  • Waste incineration grate furnace
  • Neural network
  • Time-span input
  • Main steam temperature
  • Prediction

关键词

  • 垃圾焚烧炉排炉
  • 神经网络
  • 时域输入
  • 主蒸汽温度
  • 预测

CLC number

  • TK22