Multi-geomagnetic-component assisted localization algorithm for hypersonic vehicles

高超声速飞行器多地磁分量辅助定位算法

Abstract

Owing to the lack of information about geomagnetic anomaly fields, conventional geomagnetic matching algorithms in near space are prone to divergence. Therefore, geomagnetic matching navigation algorithms for hypersonic vehicles are also prone to divergence or mismatch. To address this problem, we propose a multi-geomagnetic-component assisted localization (MCAL) algorithm to improve positioning accuracy using only the information of the main geomagnetic field. First, the main components of the geomagnetic field and a mathematical representation of the Earth’s geomagnetic field (World Magnetic Model 2015) are introduced. The mathematical relationships between the geomagnetic components are given, and the source of geomagnetic matching error is explained. We then propose the MCAL algorithm. The algorithm uses the intersections of the isopleths of the geomagnetic components and a decision method to estimate the real position of a carrier with high positioning accuracy. Finally, inertial/geomagnetic integrated navigation is simulated for hypersonic boost-glide vehicles. The simulation results demonstrate that the proposed algorithm can provide higher positioning accuracy than conventional geomagnetic matching algorithms. When the random error range is ±30 nT, the average absolute latitude error and longitude error of the MCAL algorithm are 151 m and 511 m lower, respectively, than those of the Sandia inertial magnetic aided navigation (SIMAN) algorithm.

概要

目的

改善高超声速飞行器由于地磁异常信息缺失导致的地磁匹配算法发散或失配等问题.

创新点

提出一种多地磁分量辅助定位(MCAL)算法, 并在助推-滑翔高超声速飞行器弹道上进行仿真验证.

方法

1. 给出地磁主磁场模型的数学表达, 分析地磁匹配系统的误差来源. 2. 从理想情况出发, 提出一种MCAL算法, 并通过2~3条地磁分量的等值线对飞行器位置进行估计. 3. 在助推-滑翔高超声速飞行器弹道上进行数字仿真试验, 并与其他几种传统算法进行分析比较.

结论

该方法相较于传统算法具有更高的定位精度. 当随机误差范围为±30 nT(每轴)时, MCAL算法的平均绝对纬度误差比SIMAN算法低151 m, 经度误差比SIMAN算法低511 m.

This is a preview of subscription content, access via your institution.

References

  1. Chen K, Zhang LY, Wang X, et al., 2017. Strapdown inertial navigation algorithm for hypersonic boost-glide vehicle. Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. https://doi.org/10.2514A5.2017-2174

  2. Chen K, Shen FQ, Sun HY, et al., 2019. Hypersonic vehicle navigation algorithm in launch centered Earth-fixed frame. Journal of Astronautics, 40(10):1212–1218 (in Chinese). https://doi.org/10.3873/j.issn.1000-1328.2019.10.012

    Google Scholar 

  3. Chen K, Liang WC, Liu MX, et al., 2020a. Comparison of geomagnetic aided navigation algorithms for hypersonic vehicles. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(8):673–683. https://doi.org/10.1631/jzus.A1900648

    Article  Google Scholar 

  4. Chen K, Zhou J, Shen FQ, et al., 2020b. Hypersonic boost-glide vehicle strapdown inertial navigation system/global positioning system algorithm in a launch-centered Earth-fixed frame. Aerospace Science and Technology, 98:105679. https://doi.org/10.1016/j.ast.2020.105679

    Article  Google Scholar 

  5. Chen Z, Zhang Q, Pan MC, et al., 2018. A new geomagnetic matching navigation method based on multidimensional vector elements of Earth’s magnetic field. IEEE Geoscience and Remote Sensing Letters, 15(8):1289–1293. https://doi.org/10.1109/LGRS.2018.2836465

    Article  Google Scholar 

  6. Chulliat A, Macmillan S, Alken P, et al., 2015. The US/UK World Magnetic Model for 2015–2020. Technical Report, National Geophysical Data Center, NOAA, USA. https://doi.org/10.7289/V5TB14V7

    Google Scholar 

  7. Cui F, Gao D, Zheng JH, 2020. Magnetometer-based autonomous orbit determination via a measurement differencing extended Kalman filter during geomagnetic storms. Aircraft Engineering and Aerospace Technology, 92(3): 428–439. https://doi.org/10.1108/AEAT-03-2019-0053

    Article  Google Scholar 

  8. Dong CY, Liu C, Wang Q, et al., 2019. Switched adaptive active disturbance rejection control of variable structure near space vehicles based on adaptive dynamic programming. Chinese Journal of Aeronautics, 32(7):1684–1694. https://doi.org/10.1016/j.cja.2019.03.009

    Article  Google Scholar 

  9. Duan XS, Xiao J, Qi XH, et al., 2019. An INS/geomagnetic integrated navigation algorithm based on matching strategy and hierarchical filtering. Electronics, 8(4):460. https://doi.org/10.3390/electronics8040460

    Article  Google Scholar 

  10. Goldenberg F, 2006. Geomagnetic navigation beyond the magnetic compass. IEEE/ION Position, Location, and Navigation Symposium, p.684–694. https://doi.org/10.1109/PLANS.2006.1650662

  11. Harsha PBS, Ratnam DV, 2020. Generation of regional ionospheric TEC maps with EIA nowcasting/forecasting capability during geomagnetic storm conditions. IEEE Access, 8:57879–57890. https://doi.org/10.1109/ACCESS.2020.2982468

    Article  Google Scholar 

  12. He RG, Hu XP, Zhang LL, et al., 2019. A combination orientation compass based on the information of polarized skylight/geomagnetic/MIMU. IEEE Access, 8:10879–10887. https://doi.org/10.1109/ACCESS.2019.2939591

    Article  Google Scholar 

  13. Heimpel MH, Evans ME, 2013. Testing the geomagnetic dipole and reversing dynamo models over Earth’s cooling history. Physics of the Earth and Planetary Interiors, 224: 124–131. https://doi.org/10.1016/j.pepi.2013.07.007

    Article  Google Scholar 

  14. Hu GG, Gao BB, Zhong YM, et al., 2019. Robust unscented Kalman filtering with measurement error detection for tightly coupled INS/GNSS integration in hypersonic vehicle navigation. IEEE Access, 7:151409–151421. https://doi.org/10.1109/ACCESS.2019.2948317

    Article  Google Scholar 

  15. Li H, Liu MY, Zhang FH, 2017. Geomagnetic navigation of autonomous underwater vehicle based on multi-objective evolutionary algorithm. Frontiers in Neurorobotics, 11: 34. https://doi.org/10.3389/fnbot.2017.00034

    Article  Google Scholar 

  16. Li LM, 2013. Research on Algorithm of Geomagnetic Navigation System. MS Thesis, Harbin Institute of Technology, Harbin, China (in Chinese).

    Google Scholar 

  17. Li SJ, Lei HM, Shao L, et al., 2019. Multiple model tracking for hypersonic gliding vehicles with aerodynamic modeling and analysis. IEEE Access, 7:28011–28018. https://doi.org/10.1109/ACCESS.2019.2899678

    Article  Google Scholar 

  18. Liu MY, Wang PX, Guo JJ, et al., 2019. Research on geomagnetic navigation and positioning algorithm based on full-connected constraints for AUV. OCEANS 2019-Marseille, p.1–5. https://doi.org/10.1109/OCEANSE.2019.8867319

  19. Lv Z, Xia ZX, Liu B, et al., 2017. Preliminary experimental study on solid-fuel rocket scramjet combustor. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(2):106–112. https://doi.org/10.1631/jzus.A1600489

    Article  Google Scholar 

  20. NCEI (National Centers for Environmental Information), 2019. The world magnetic model. NCEI, USA. https://www.ngdc.noaa.gov/geomag/WMM/index.html

    Google Scholar 

  21. Qi XK, Ye DX, Sun YZ, et al., 2017. Simulations to true animals’ long-distance geomagnetic navigation. IEEE Transactions on Magnetics, 53(1):5200108. https://doi.org/10.1109/TMAG.2016.2600540

    Google Scholar 

  22. Shen BX, Liu HP, Liu WQ, 2020. Influence of angle of attack on a combined opposing jet and platelet transpiration cooling blunt nose in hypersonic vehicle. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(9):761–769. https://doi.org/10.1631/jzus.A1900514

    Article  Google Scholar 

  23. Song ZG, Zhang JS, Zhu WQ, et al., 2016. The vector matching method in geomagnetic aiding navigation. Sensors, 16(7):1120. https://doi.org/10.3390/s16071120

    Article  Google Scholar 

  24. Wang JH, Guo YF, Guo LW, et al., 2019. Performance test of MPMD matching algorithm for geomagnetic and RFID combined underground positioning. IEEE Access, 7: 129789–129801. https://doi.org/10.1109/ACCESS.2019.2926098

    Article  Google Scholar 

  25. Wang Q, Zhou J, 2019. Triangle matching method for the sparse environment of geomagnetic information. Optik, 181:651–658. https://doi.org/10.1016/j.ijleo.2018.12.118

    Article  Google Scholar 

  26. Wang WK, Hou ZX, Shan SQ, et al., 2019. Periodically cruising hypersonic vehicle with active cooling: an optimal-control based design approach. IEEE Access, 7: 65486–65505. https://doi.org/10.1109/ACCESS.2019.2918848

    Article  Google Scholar 

  27. Wang YY, Yang XX, Yan HC, 2019. Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic measurement information. IEEE Transactions on Industrial Electronics, 66(12):9439–9447. https://doi.org/10.1109/TIE.2019.2892696

    Article  Google Scholar 

  28. Wei WH, Gao ZH, Gao SS, et al., 2018. A SINS/SRS/GNS autonomous integrated navigation system based on spectral redshift velocity measurements. Sensors, 18(4):1145. https://doi.org/10.3390/s18041145

    Article  Google Scholar 

  29. Xia RS, Wu QX, Chen M, 2019. Disturbance observer-based optimal longitudinal trajectory control of near space vehicle. Science China Information Sciences, 62(5):50212. https://doi.org/10.1007/s11432-018-9683-y

    Article  Google Scholar 

  30. Xiao J, Duan XS, Qi XH, et al., 2020. An improved ICCP matching algorithm for use in an interference environment during geomagnetic navigation. The Journal of Navigation, 73(1):56–74. https://doi.org/10.1017/S0373463319000535

    Article  Google Scholar 

  31. Yang C, Zhao HD, Wu ZG, 2019. Research progress of aerothermoelasticity of air-breathing hypersonic vehicles. Journal of Beijing University of Aeronautics and Astronautics, 45(10):1911–1923 (in Chinese). https://doi.org/10.13700/j.bh.1001-5965.2019.0120

    Google Scholar 

  32. Zong H, Liu Y, Yang Y, 2018. Overview of the research status about geomagnetic navigation technology. Aerospace Control, 36(3):93–98 (in Chinese). https://doi.org/10.16804/j.cnklissn1006-3242.2018.03.015

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kai Chen.

Additional information

Project supported by the Space Science and Technology Innovation Fund of China (No. 2016KC020028) and the Fund of China Space Science and Technology (No. 2017-HT-XG)

Contributors

Kai CHEN designed the research and provided the funding support. Wen-chao LIANG wrote the first draft of the manuscript and conducted the literature review. Cheng-zhi ZENG processed the data. Rui GUAN revised the final version and developed the software.

Conflict of interest

Kai CHEN, Wen-chao LIANG, Cheng-zhi ZENG, and Rui GUAN declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Liang, Wc., Zeng, Cz. et al. Multi-geomagnetic-component assisted localization algorithm for hypersonic vehicles. J. Zhejiang Univ. Sci. A 22, 357–368 (2021). https://doi.org/10.1631/jzus.A2000524

Download citation

Key words

  • Geomagnetic navigation
  • Isopleth
  • Geomagnetic components
  • Integrated navigation
  • Kálmán filter

关键词

  • 地磁导航
  • 等值线
  • 地磁分量
  • 组合导航
  • 卡尔曼滤波

CLC number

  • V44