Skip to main content

Carbon self-doped polytriazine imide nanotubes with optimized electronic structure for enhanced photocatalytic activity

碳自掺杂聚三嗪亚胺纳米管的电子结构优化及其光催化产氢和降解四环素性能

Abstract

The triazine-based carbon nitride known as polytriazine imide (PTI) is a metal-free semiconductor photocatalyst but usually shows moderate activity due to its limited charge transfer mobility. Here, carbon self-doped PTI (C-PTI) was prepared via a facile and green method by using glucose as the carbon source. In the condensation process, glucose can promote nanotube formation, giving the product larger surface areas. Moreover, carbon self-doping induces an intrinsic change in the electronic structure, thus optimizing the band structure and the electronic transport property. Therefore, the as-synthesized C-PTI exhibits remarkably enhanced photocatalytic activities for both hydrogen evolution and tetracycline degradation reactions.

摘要

目 的

聚三嗪亚胺 (PTI) 较小的共轭体系导致其光生电荷转移受限, 光催化活性较低. 本文旨在通过碳自掺杂来优化PTI的电子结构, 提升电荷传递效率, 以提高体系光催化活性.

创新点

1. 通过碳自掺杂提高产物C-PTI的比表面积, 优化其电子结构, 提升电荷传递效率; 2. 提高C-PTI的光催化分解水产氢和光催化降解四环素的活性.

方 法

1. 采用X射线衍射、 X射线光电子能谱、 扫描电镜、 透射电镜、 紫外-可见漫反射光谱等手段对产物进行表征和能带结构研究; 2. 通过光电化学测试和荧光发射光谱, 研究产物中光生电荷的分离和传递效率; 3. 通过光催化分解水产氢和光催化降解四环素的实验, 评价产物的光催化性能.

结 论

1. 以葡萄糖为碳源, 采用一种绿色简便的方法成功制备了碳自掺杂PTI光催化剂; 2. 碳自掺杂使产物具有更大的比表面积、 更负的导带位置、 更正的价带位置以及更高的电荷传递效率; 3. 合成的C-PTI在光催化分解水产氢和光催化降解四环素的反应中都表现出更高的活性.

This is a preview of subscription content, access via your institution.

References

  1. Bojdys MJ, Müller JO, Antonietti M, et al., 2008. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chemistry-A European Journal, 14(27):8177–8182. https://doi.org/10.1002/chem.200800190

    Article  Google Scholar 

  2. Deng YC, Li ZY, Tang RD, et al., 2020. What will happen when microorganisms “meet” photocatalysts and photocatalysis? Environmental Science: Nano, 7(3):702–723. https://doi.org/10.1039/c9en01318k

    Google Scholar 

  3. Dong GH, Zhao K, Zhang LZ, 2012. Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chemical Communications, 48(49):6178–6180. https://doi.org/10.1039/C2CC32181E

    Article  Google Scholar 

  4. Fang JW, Fan HQ, Li MM, et al., 2015. Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 3(26):13819–13826. https://doi.org/10.1039/C5TA02257F

    Article  Google Scholar 

  5. Gusain R, Gupta K, Joshi P, et al., 2019. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review. Advances in Colloid and Interface Science, 272:102009. https://doi.org/10.1016/j.cis.2019.102009

    Article  Google Scholar 

  6. Ham Y, Maeda K, Cha D, et al., 2013. Synthesis and photocatalytic activity of poly (triazine imide). Chemistry-An Asian Journal, 8(1):218–224. https://doi.org/10.1002/asia.201200781

    Article  Google Scholar 

  7. Heymann L, Bittinger SC, Klinke C, 2018. Molecular doping of electrochemically prepared triazine-based carbon nitride by 2,4,6-triaminopyrimidine for improved photocatalytic properties. ACS Omega, 3(12):17042–17048. https://doi.org/10.1021/acsomega.8b02659

    Article  Google Scholar 

  8. Huang DL, Chen S, Zeng GM, et al., 2019. Artificial Z-scheme photocatalytic system: what have been done and where to go? Coordination Chemistry Reviews, 385:44–80. https://doi.org/10.1016/j.ccr.2018.12.013

    Article  Google Scholar 

  9. Jia JJ, White ER, Clancy AJ, et al., 2018. Fast exfoliation and functionalisation of two-dimensional crystalline carbon nitride by framework charging. Angewandte Chemie International Edition, 57(39):12656–12660. https://doi.org/10.1002/anie.201800875

    Article  Google Scholar 

  10. Lin LH, Ou HH, Zhang YF, et al., 2016. Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catalysis, 6(6): 3921–3931. https://doi.org/10.1021/acscatal.6b00922

    Article  Google Scholar 

  11. Liu BS, Yang JJ, Wang JY, et al., 2019. High sub-band gap response of TiO2 nanorod arrays for visible photoelectrochemical water oxidation. Applied Surface Science, 465:192–200. https://doi.org/10.1016/j.apsusc.2018.09.098

    Article  Google Scholar 

  12. Liu J, Liu Y, Liu NY, et al., 2015. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 347(6225):970–974. https://doi.org/10.1126/science.aaa3145

    Article  Google Scholar 

  13. Ma FK, Wu YZ, Shao YL, et al., 2016. 0D/2D nanocomposite visible light photocatalyst for highly stable and efficient hydrogen generation via recrystallization of CdS on MoS2 nanosheets. Nano Energy, 27:466–474. https://doi.org/10.1016/j.nanoen.2016.07.014

    Article  Google Scholar 

  14. Mou ZG, Zhang H, Liu ZM, et al., 2019. Ultrathin BiOCl/nitrogen-doped graphene quantum dots composites with strong adsorption and effective photocatalytic activity for the degradation of antibiotic ciprofloxacin. Applied Surface Science, 496:143655. https://doi.org/10.1016/j.apsusc.2019.143655

    Article  Google Scholar 

  15. Ong WJ, Tan LL, Ng YH, et al., 2016. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chemical Reviews, 116(12): 7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075

    Article  Google Scholar 

  16. Rimoldi L, Giordana A, Cerrato G, et al., 2019. Insights on the photocatalytic degradation processes supported by TiO2/WO3 systems. The case of ethanol and tetracycline. Catalysis Today, 328:210–215. https://doi.org/10.1016/j.cattod.2018.11.035

    Article  Google Scholar 

  17. Schwinghammer K, Tuffy B, Mesch MB, et al., 2013. Triazine-based carbon nitrides for visible-light-driven hydrogen evolution. Angewandte Chemie International Edition, 52(9):2435–2439. https://doi.org/10.1002/anie.201206817

    Article  Google Scholar 

  18. Schwinghammer K, Mesch MB, Duppel V, et al., 2014. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. Journal of the American Chemical Society, 136(5):1730–1733. https://doi.org/10.1021/ja411321s

    Article  Google Scholar 

  19. Stolarczyk JK, Bhattacharyya S, Polavarapu L, et al., 2018. Challenges and prospects in solar water splitting and CO2 reduction with inorganic and hybrid nanostructures. ACS Catalysis, 8(4):3602–3635. https://doi.org/10.1021/acscatal.8b00791

    Article  Google Scholar 

  20. Suter TM, Miller TS, Cockcroft JK, et al., 2019. Formation of an ion-free crystalline carbon nitride and its reversible intercalation with ionic species and molecular water. Chemical Science, 10(8):2519–2528. https://doi.org/10.1039/C8SC05232H

    Article  Google Scholar 

  21. Wang XC, Maeda K, Thomas A, et al., 2009. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8(1):76–80. https://doi.org/10.1038/nmat2317

    Article  Google Scholar 

  22. Wang XL, Liu Q, Yang Q, et al., 2018. Three-dimensional g-C3N4 aggregates of hollow bubbles with high photocatalytic degradation of tetracycline. Carbon, 136:103–112. https://doi.org/10.1016/j.carbon.2018.04.059

    Article  Google Scholar 

  23. Wang Y, Wang XC, Antonietti M, 2012. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angewandte Chemie International Edition, 51(1):68–89. https://doi.org/10.1002/anie.201101182

    Article  Google Scholar 

  24. Wang Y, Liu XQ, Liu J, et al., 2018. Carbon quantum dot implanted graphite carbon nitride nanotubes: excellent charge separation and enhanced photocatalytic hydrogen evolution. Angewandte Chemie International Edition, 57(20):5765–5771. https://doi.org/10.1002/anie.201802014

    Article  Google Scholar 

  25. Wei FY, Liu Y, Zhao H, et al., 2018. Oxygen self-doped g-C3N4 with tunable electronic band structure for un-precedentedly enhanced photocatalytic performance. Nanoscale, 10(9):4515–4522. https://doi.org/10.1039/C7NR09660G

    Article  Google Scholar 

  26. Wirnhier E, Döblinger M, Gunzelmann D, et al., 2011. Poly(triazine imide) with intercalation of lithium and chloride ions [(C3N3)2(NHxLi1−x)3·LiCl]: a crystalline 2D carbon nitride network. Chemistry-A European Journal, 17(11):3213–3221. https://doi.org/10.1002/chem.201002462

    Article  Google Scholar 

  27. Yu YG, Yang X, Zhao YL, et al., 2018. Engineering the band gap states of the rutile TiO2(110) surface by modulating the active heteroatom. Angewandte Chemie-International Edition, 57(28):8550–8554. https://doi.org/10.1002/anie.201803928

    Article  Google Scholar 

  28. Zhang H, Liu F, Mou ZG, et al., 2016. A facile one-step synthesis of ZnO quantum dots modified poly(triazine imide) nanosheets for enhanced hydrogen evolution under visible light. Chemical Communications, 52(88):13020–13023. https://doi.org/10.1039/C6CC06970C

    Article  Google Scholar 

  29. Zhang H, Cao YQ, Zhong L, et al., 2019. Fast photogenerated electron transfer in N-GQDs/PTI/ZnO-QDs ternary heterostructured nanosheets for photocatalytic H2 evolution under visible light. Applied Surface Science, 485:361–367. https://doi.org/10.1016/j.apsusc.2019.04.230

    Article  Google Scholar 

  30. Zhang YL, Hu LL, Zhu C, et al., 2016. Air activation by a metal-free photocatalyst for “totally-green” hydrocarbon selective oxidation. Catalysis Science & Technology, 6(19):7252–7258. https://doi.org/10.1039/C6CY01066K

    Article  Google Scholar 

  31. Zhao ZW, Sun YJ, Dong F, 2015. Graphitic carbon nitride based nanocomposites: a review. Nanoscale, 7(1):15–37. https://doi.org/10.1039/c4nr03008g

    Article  Google Scholar 

  32. Zhong YY, Zhao G, Ma FK, et al., 2016. Utilizing photocorrosion-recrystallization to prepare a highly stable and efficient CdS/WS2 nanocomposite photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental, 199:466–472. https://doi.org/10.1016/j.apcatb.2016.06.065

    Article  Google Scholar 

  33. Zuo F, Wang L, Wu T, et al., 2010. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. Journal of the American Chemical Society, 132(34): 11856–11857. https://doi.org/10.1021/ja103843d

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Hui ZHANG designed the research. Hui ZHANG, Zhen YANG, Yu-qi CAO, and Zhi-gang MOU processed the corresponding data. Hui ZHANG wrote the first draft of the manuscript. Xin CAO and Jian-hua SUN helped to organize the manuscript. Hui ZHANG revised and edited the final version.

Corresponding authors

Correspondence to Xin Cao or Jian-hua Sun.

Ethics declarations

Hui ZHANG, Zhen YANG, Yu-qi CAO, Zhi-gang MOU, Xin CAO, and Jian-hua SUN declare that they have no conflict of interest.

Additional information

Project supported by the National Natural Science Foundation of China (No. 51702134), the Natural Science Foundation of Jiangsu Province (No. BK20170310), the PhD Research Startup Foundation of Jiangsu University of Technology (No. KYY18038), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. XSJCX20_01), China

Electronic supplementary materials

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yang, Z., Cao, Yq. et al. Carbon self-doped polytriazine imide nanotubes with optimized electronic structure for enhanced photocatalytic activity. J. Zhejiang Univ. Sci. A 22, 751–759 (2021). https://doi.org/10.1631/jzus.A2000386

Download citation

Key words

  • Polytriazine imide (PTI)
  • Photocatalysis
  • Hydrogen evolution
  • Tetracycline degradation

关键词

  • PTI
  • 光催化
  • 产氢
  • 降解四环素

CLC number

  • O643.3