Skip to main content
Log in

Experimental and numerical investigations of film flow behaviors in resonance section over corrugated plates

波纹板薄膜流体共振现象的数值及实验研究

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The oscillation of gas–liquid interface is enhanced when film flows over a specific corrugation under certain flow conditions. The resonance phenomenon occurs when the free surface amplitude reaches its maximum. In this study, the resonance section is proposed for the first time in which the oscillation of the film surface is enhanced and bottom eddies are suppressed. The trend of the bottom eddies inspires the discovery of the resonance section. The dynamic characteristics of the resonance phenomenon were analyzed by simulations and experiments. The numerical simulations were performed with the open source software OpenFOAM, and the experiments were conducted by the particle image velocimetry (PIV) method. In the resonance section, the dynamic characteristics are different from the other sections: the upper and lower bounds of the resonance section correspond to the two inflection points of free surface amplitude, the variations in average liquid film thickness are slight, and the normal velocity intensity of the free surface is increased. Additionally, the enhancement of velocity intensity occurs within a region.

摘 要

目 的

探究薄膜流体共振现象的内在机理。

创新点

  1. 1.

    提出薄膜流体共振区的概念。

  2. 2.

    提出共振现象与雷诺数的范围有关、 而不是与某一特定的雷诺数有关的观点。

方 法

  1. 1.

    使用有限体积法对薄膜流进行数值模拟计算。

  2. 2.

    为了验证模拟的准确性, 运用粒子图像测速法进行实验测量。

结 论

  1. 1.

    薄膜流体共振可以使自由表面的振荡最大化。

  2. 2.

    共振现象与雷诺数的范围有关, 而不是与特定的雷诺数有关。

  3. 3.

    在共振区域中, 薄膜表面的振动增强, 底部涡流被抑制, 并且这些都有利于传热传质效率的提高。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argyriadi K, Vlachogiannis M, Bontozoglou V, 2006. Experimental study of inclined film flow along periodic corrugations: the effect of wall steepness. Physics of Fluids, 18(1):012102. https://doi.org/10.1063/1.2163810

    Article  Google Scholar 

  • Bontozoglou V, 2000. Laminar film flow along a periodic wall. Computer Modeling in Engineering & Sciences, 1(2): 133–142. https://doi.org/10.3970/cmes.2000.001.293

    MATH  Google Scholar 

  • Bontozoglou V, Papapolymerou G, 1997. Laminar film flow down a wavy incline. International Journal of Multiphase Flow, 23(1):69–79. https://doi.org/10.1016/s0301-9322(96)00053-5

    Article  MATH  Google Scholar 

  • Brackbill JU, Kothe DB, Zemach C, 1992. A continuum method for modeling surface tension. Journal of Computational Physics, 100(2):335–354. https://doi.org/10.1016/0021-9991(92)90240-y

    Article  MathSciNet  MATH  Google Scholar 

  • Conn JJA, Duffy BR, Pritchard D, et al., 2017. Simple waves and shocks in a thin film of a perfectly soluble antisurfactant solution. Journal of Engineering Mathematics, 107(1):167–178. https://doi.org/10.1007/s10665-017-9924-8

    Article  MathSciNet  MATH  Google Scholar 

  • Gu F, 2004. CFD Simulations of the Local-flow and Mass-transfer in the Structured Packing. PhD Thesis, Tianjin University, Tianjin, China (in Chinese).

    Google Scholar 

  • Heining C, Bontozoglou V, Aksel N, et al., 2009. Nonlinear resonance in viscous films on inclined wavy planes. International Journal of Multiphase Flow, 35(1):78–90. https://doi.org/10.1016/j.ijmultiphaseflow.2008.07.005

    Article  Google Scholar 

  • Hirt CW, Nichols BD, 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1):201–225. https://doi.org/10.1016/0021-9991(81)90145-5

    Article  MATH  Google Scholar 

  • Ho WK, Tay A, Lee LL, et al., 2004. On control of resist film uniformity in the microlithography process. Control Engineering Practice, 12(7):881–892. https://doi.org/10.1016/j.conengprac.2003.12.001

    Article  Google Scholar 

  • Li J, 2015. Numerical Simulation and Experimental Research on Film Flow of Corrugated Packing Surface. MS Thesis, Zhejiang University, Hangzhou, China (in Chinese).

    Google Scholar 

  • Li J, Guo YQ, Tong ZY, et al., 2015. Comparative study on the characteristics of film flow with different corrugation plates. Microgravity Science and Technology, 27(3):171–179. https://doi.org/10.1007/s12217-015-9429-x

    Article  Google Scholar 

  • Li PP, Chen ZQ, Shi J, 2018. Numerical study on the effects of gravity and surface tension on condensation process in square minichannel. Microgravity Science and Technology, 30(1-2):19–24. https://doi.org/10.1007/s12217-017-9570-9

    Article  Google Scholar 

  • Li QS, Wang T, Dai CN, et al., 2016. Hydrodynamics of novel structured packings: an experimental and multi-scale CFD study. Chemical Engineering Science, 143:23–35. https://doi.org/10.1016/j.ces.2015.12.014

    Article  Google Scholar 

  • Malamataris NT, Bontozoglou V, 1999. Computer aided analysis of viscous film flow along an inclined wavy wall. Journal of Computational Physics, 154(2):372–392. https://doi.org/10.1006/jcph.1999.6319

    Article  MATH  Google Scholar 

  • Nabil M, Rattner AS, 2017. A computational study on the effects of surface tension and Prandtl number on laminarwavy falling-film condensation. Journal of Heat Transfer, 139(12):121501. https://doi.org/10.1115/1.4037062

    Article  Google Scholar 

  • Nieves-Remacha MJ, Yang L, Jensen KF, 2015. OpenFOAM computational fluid dynamic simulations of two-phase flow and mass transfer in an advanced-flow reactor. Industrial & Engineering Chemistry Research, 54(26): 6649–6659. https://doi.org/10.1021/acs.iecr.5b00480

    Article  Google Scholar 

  • Pak M, 2011. Research on the Dynamics of Liquid Film Flowing Down a Corrugated Wall. PhD Thesis, Shanghai University, Shanghai, China (in Chinese).

    Google Scholar 

  • Paschke S, 2011. Experimentelle Analyse Ein- und Zweiphasiger Filmstroemungen auf Glatten und Strukturierten Oberflaechen. PhD Thesis, TU Berlin, Berlin, Germany (in German).

    Google Scholar 

  • Pavlenko AP, Volodin OA, Surtaev AA, 2017. Hydrodynamics in falling liquid films on surfaces with complex geometry. Applied Thermal Engineering, 114:1265–1274. https://doi.org/10.1016/j.applthermaleng.2016.10.013

    Article  Google Scholar 

  • Schörner M, Reck D, Aksel N, 2016. Stability phenomena far beyond the Nusselt flow–revealed by experimental asymptotics. Physics of Fluids, 28(2):022102. https://doi.org/10.1063/1.4941000

    Article  Google Scholar 

  • Tong ZY, Marek A, Hong WR, et al., 2013. Experimental and numerical investigation on gravity-driven film flow over triangular corrugations. Industrial & Engineering Chemistry Research, 52(45):15946–15958. https://doi.org/10.1021/ie303038c

    Article  Google Scholar 

  • Trifonov Y, 2014. Stability of a film flowing down an inclined corrugated plate: the direct Navier-Stokes computations and Floquet theory. Physics of Fluids, 26(11):114101. https://doi.org/10.1063/1.4900857

    Article  Google Scholar 

  • Trifonov YY, 2016. Viscous liquid film flow down an inclined corrugated surface. Calculation of the flow stability to arbitrary perturbations using an integral method. Journal of Applied Mechanics and Technical Physics, 57(2):195–201. https://doi.org/10.1134/S0021894416020012

    Article  MathSciNet  Google Scholar 

  • Vlachogiannis M, Bontozoglou V, 2002. Experiments on laminar film flow along a periodic wall. Journal of Fluid Mechanics, 457:133–156. https://doi.org/10.1017/s0022112001007637

    Article  MATH  Google Scholar 

  • Wang YP, Zhou LQ, Kang X, et al., 2017. Experimental and numerical optimization of direct-contact liquid film cooling in high concentration photovoltaic system. Energy Conversion and Management, 154:603–614. https://doi.org/10.1016/j.enconman.2017.11.014

    Article  Google Scholar 

  • Wierschem A, Bontozoglou V, Heining C, et al., 2008. Linear resonance in viscous films on inclined wavy planes. International Journal of Multiphase Flow, 34(6):580–589. https://doi.org/10.1016/j.ijmultiphaseflow.2007.12.001

    Article  Google Scholar 

  • Wierschem A, Pollak T, Heining C, et al., 2010. Suppression of eddies in films over topography. Physics of Fluids, 22(11): 113603. https://doi.org/10.1063/1.3504374

    Article  Google Scholar 

  • Wu SQ, Cai L, Yuan MC, et al., 2016. Influence of countercurrent airflow on the film flow characteristics. Chemical Engineering, 44(12):45–49 (in Chinese). https://doi.org/10.3969/j.issn.1005-9954.2016.12.010

    Google Scholar 

  • Xu YY, 2010. Computational Fluid Dynamics Modeling and Validation to Portray the Liquid Flow Behavior for Multiphase Flow. PhD Thesis, Shanghai Jiao Tong University, Shanghai, China (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-rong Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Yq., Liu, Nx., Cai, L. et al. Experimental and numerical investigations of film flow behaviors in resonance section over corrugated plates. J. Zhejiang Univ. Sci. A 20, 148–162 (2019). https://doi.org/10.1631/jzus.A1800191

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1800191

Key words

关键词

CLC number

Navigation