Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 19, Issue 5, pp 399–408 | Cite as

Influence of annealing conditions on the properties of Cu(In,Ga)Se2 thin films fabricated by electrodeposition

  • Jing-yu Qu
  • Zheng-fei Guo
  • Kun Pan
  • Wei-wei Zhang
  • Xue-jin Wang
Article

Abstract

Cu(In,Ga)Se2 (CIGS) precursor films were deposited on Mo/glass by electrodeposition, and then annealed in Se vapor. The annealing temperature ranged from 450 °C to 580 °C, and two heating rates were selected. The results showed that the crystalline quality of the CIGS films and formation of the Cu-Se compound could be strongly influenced by the selenization temperature and heating rate. Raman spectroscopy and X-ray diffraction (XRD) analysis showed that when the selenization temperature was increased from 450 °C to 550 °C, the amount of binary CuSe phase decreased and the amount of Cu2Se increased. After annealing at 580 °C, a minimum amount of Cu2−xSe compounds was obtained and the degree of CIGS film crystallinity was higher than in other samples. The relationship between the properties of the film and the heating rate was studied. XRD and Raman spectra showed a decrease in the Cu2−xSe phase with increasing heating rate. Scanning electron microscopy (SEM) and XRD showed a remarkable increase in the grain size of CIGS during rapid heating.

Key words

Cu(In,Ga)Se2 (CIGS) thin films Electrodeposition Selenization Raman spectroscopy 

退火条件对电沉积制备铜铟镓硒薄膜品质的影响

摘要

目的

退火条件直接影响着电沉积制备的铜铟镓硒薄膜品质,而薄膜品质决定着最终得到器件的转换效率。本实验在不同退火条件下对薄膜进行处理,得出退火条件对薄膜各项表征指标的影响规律,并根据观察到的规律改善退火工艺,以提高铜铟镓硒薄膜品质。

创新点

目前利用水溶液电沉积制备的铜铟镓硒薄膜太阳能电池转换效率不高,而退火是制作此电池的关键步骤之一。本文研究了退火温度和升温速率对薄膜品质的影响,分析其可能原因及退火过程发生的反应,并制备出了理想的高品质薄膜。

方法

1. 在水溶液中利用电沉积法制备出铜铟镓硒薄膜前驱体。2. 对前驱体进行退火处理,并针对不同的样品采用不同的退火温度和升温速率。3. 利用X 射线衍射(XRD)、拉曼光谱(Raman)、扫描电子显微镜(SEM)、X 射线荧光光谱(XRF)对薄膜进行表征,分析不同退火条件对结果的影响规律。

结论

1. 退火温度的影响:退火温度由450 °C 升高到580 °C 时,得到的薄膜结晶性越来越好,晶粒边界越来越不明显,Cu/(In+Ga)的比例逐渐升高,说明高温下(≥450 °C)金属铟和镓较易挥发;实验中还发现Cu-Se 化合物的总含量随退火温度的升高而降低。2. 升温速率的影响:退火速率越高,薄膜结晶性越好;快速升温时薄膜中Cu/(In+Ga)的比例略低于慢速升温时的样品,而Ga/(In+Ga)的比例几乎不变,说明快速升温可以减少In 和Ga 的挥发。

关键词

铜铟镓硒薄膜 电沉积 退火条件 拉曼光谱 

CLC number

O47 O64 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank Prof. Leo WM LAU and Dr. Cheng LIAO (Chengdu Green Energy and Green Manufacturing Technology R&D Centre, Chengdu Development Center of Science and Technology, China) for their technical and experimental supports, and thank China Academy of Engineering Physics for suggestion about the study.

References

  1. Adurodija FO, Song J, Kim SD, et al., 1999. Growth of CuInSe2 thin films by high vapour Se treatment of co-sputtered Cu-In alloy in a graphite container. Thin Solid Films, 338(1–2):13–19. https://doi.org/10.1016/S0040-6090(98)00358-7 CrossRefGoogle Scholar
  2. Ao JP, Yang L, Yan L, et al., 2009. Comparison of the compositions and structures of electrodeposited Cu-poor and Cu-rich Cu(In1-xGax)Se2 films before and after selenization. Acta Physica Sinica, 58(3):1870–1878.Google Scholar
  3. Basol BM, Kapur VK, 1990. Deposition of CuInSe2 films by a 2-stage process utilizing e-beam evaporation. IEEE Transactions on Electron Devices, 37(2):418–421. https://doi.org/10.1109/16.46376 CrossRefGoogle Scholar
  4. Bhattacharya RN, Batchelor W, Granata JE, et al., 1998. CuIn(1-x)GaxSe2-based photovoltaic cells from electrodeposited and chemical bath deposited precursors. Solar Energy Materials and Solar Cells, 55(1–2):83–94. https://doi.org/10.1016/S0927-0248(98)00049-X CrossRefGoogle Scholar
  5. Birkmire RW, Eser E, 1997. Polycrystalline thin film solar cells: present status and future potential. Annual Review of Materials Science, 27(1):625–653. https://doi.org/10.1146/annurev.matsci.27.1.625 CrossRefGoogle Scholar
  6. Chen CH, Hu HT, Lin FM, et al., 2017. Residual stress analysis and bow simulation of crystalline silicon solar cells. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(1):49–58. https://doi.org/10.1631/jzus.A1500279 CrossRefGoogle Scholar
  7. Chen DS, Yang J, Xu F, et al., 2013. Performance improvement of CdS/Cu(In,Ga)Se2 solar cells after rapid thermal annealing. Chinese Physics B, 22(1):018801. https://doi.org/10.1088/1674-1056/22/1/018801 CrossRefGoogle Scholar
  8. Contreras MA, Romero MJ, Noufi R, 2006. Characterization of Cu(In,Ga)Se2 materials used in record performance solar cells. Thin Solid Films, 511-512:51–54. https://doi.org/10.1016/j.tsf.2005.11.097 CrossRefGoogle Scholar
  9. Delsol T, Samantilleke AP, Chaure NB, et al., 2004. Experimental study of graded bandgap Cu(InGa)(SeS)2 thin films grown on glass/molybdenum substrates by selenization and sulphidation. Solar Energy Materials and Solar Cells, 82(4):587–599. https://doi.org/10.1016/j.solmat.2004.02.018 Google Scholar
  10. Fernandez AM, Bhattacharya RN, 2005. Electrodeposition of CuIn1-xGaxSe2 precursor films: optimization of film composition and morphology. Thin Solid Films, 474(1-2): 10–13. https://doi.org/10.1016/j.tsf.2004.02.104 CrossRefGoogle Scholar
  11. Friedfeld R, Raffaelle RP, Mantovani JG, 1999. Electrodeposition of CuIn(1-x)GaxSe2 thin films. Solar Energy Materials and Solar Cells, 58(4):375–385. https://doi.org/10.1016/S0927-0248(99)00010-0 CrossRefGoogle Scholar
  12. Hamakawa Y, 2012. Thin-film Solar Cells Next Generation Photovoltaics and Its Applications. Springer-Verlag Berlin Heidelberg, p.167.Google Scholar
  13. Harati M, Jia J, Giffard K, et al., 2010. One-pot electrodeposition, characterization and photoactivity of stoichiometric copper indium gallium diselenide (CIGS) thin films for solar cells. Physical Chemistry Chemical Physics, 12(46):15282–15290. https://doi.org/10.1039/c0cp00586j CrossRefGoogle Scholar
  14. Izquierdo-Roca V, Saucedo E, Ruiz CM, et al., 2009. Raman scattering and structural analysis of electrodeposited CuInSe2 and S-rich quaternary CuIn(S,Se)2 semiconductors for solar cells. Physica Status Solidi (a), 206(5): 1001–1004. https://doi.org/10.1002/pssa.200881239 CrossRefGoogle Scholar
  15. Jackson P, Hariskos D, Wuerz R, et al., 2014. Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%. Physica Status Solidi (RRL)-Rapid Research Letters, 8(3):219–222. https://doi.org/10.1002/pssr.201409040 CrossRefGoogle Scholar
  16. Jiang F, Feng J, 2006. Effect of temperature on selenization process of metallic Cu-In alloy precursors. Thin Solid Films, 515(4):1950–1955. https://doi.org/10.1016/j.tsf.2006.07.154 CrossRefGoogle Scholar
  17. Karg F, Probst V, Harms H, et al., 1993. Novel rapidthermal-processing for CIS thin-film solar cells. Conference Record of the 23rd IEEE Photovoltaic Specialists Conference, p.441–446.Google Scholar
  18. Kemell M, Ritala M, Saloniemi H, et al., 2000. One-step electrodeposition of Cu2-xSe and CuInSe2 thin films by the induced co-deposition mechanism. Journal of the Electrochemical Society, 147(3):1080–1087. https://doi.org/10.1149/1.1393317 CrossRefGoogle Scholar
  19. Lakshmikumar ST, Rastogi AC, 1996. Phase evolution in lowpressure Se vapor selenization of evaporated Cu/In bilayer precursors. Journal of Applied Physics, 79(7):3585–3591. https://doi.org/10.1063/1.361411 CrossRefGoogle Scholar
  20. Lincot D, Guillemoles JF, Taunier S, et al., 2004. Chalcopyrite thin film solar cells by electrodeposition. Solar Energy, 77(6):725–737. https://doi.org/10.1016/j.solener.2004.05.024 CrossRefGoogle Scholar
  21. Malaquias JC, Steichen M, Dale PJ, 2015. One-step electrodeposition of metal precursors from a deep eutectic solvent for Cu(In,Ga)Se2 thin film solar cells. Electrochimica Acta, 151:150–156. https://doi.org/10.1016/j.electacta.2014.11.089 CrossRefGoogle Scholar
  22. Mise T, Nakada T, 2009. Microstructural properties of (In,Ga)2Se3 precursor layers for efficient cigs thin-film solar cells. Solar Energy Materials and Solar Cells, 93(6–7):1000–1003. https://doi.org/10.1016/j.solmat.2008.11.028 CrossRefGoogle Scholar
  23. Panicker MPR, Knaster M, Kroger FA, 1978. Cathodic deposition of CdTe from aqueous-electrolytes. Journal of the Electrochemical Society, 125(4):566–572. https://doi.org/10.1149/1.2131499 CrossRefGoogle Scholar
  24. Powalla M, Voorwinden G, Hariskos D, et al., 2009. Highly efficient CIS solar cells and modules made by the coevaporation process. Thin Solid Films, 517(7):2111–2114. https://doi.org/10.1016/j.tsf.2008.10.126 CrossRefGoogle Scholar
  25. Rau U, Schock HW, 1999. Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges. Applied Physics A: Materials Science & Processing, 69(2): 131–147. https://doi.org/10.1007/s003390050984 CrossRefGoogle Scholar
  26. Saji VS, Choi IH, Lee CW, 2011. Progress in electrodeposited absorber layer for CuIn(1-x)GaxSe2 (CIGS) solar cells. Solar Energy, 85(11):2666–2678. https://doi.org/10.1016/j.solener.2011.08.003 CrossRefGoogle Scholar
  27. Sebastian PJ, Calixto ME, Bhattacharya RN, et al., 1999. CIS and CIGS based photovoltaic structures developed from electrodeposited precursors. Solar Energy Materials and Solar Cells, 59(1–2):125–135. https://doi.org/10.1016/S0927-0248(99)00037-9 CrossRefGoogle Scholar
  28. Witte W, Kniese R, Eicke A, et al., 2006. Influence of the GA content on the Mo/Cu(In,Ga)Se2 interface formation. Conference Record of the IEEE 4th World Conference on Photovoltaic Energy Conversion, p.553–556. https://doi.org/10.1109/WCPEC.2006.279515 Google Scholar
  29. Witte W, Kniese R, Powalla M, 2008. Raman investigations of Cu(In,Ga)Se2 thin films with various copper contents. Thin Solid Films, 517(2):867–869. https://doi.org/10.1016/j.tsf.2008.07.011 CrossRefGoogle Scholar
  30. Yamanaka S, Tanda M, Nakada N, et al., 1991. Study of CuInSe2 formation kinetics in the selenization process by Raman spectroscopy. Japanese Journal of Applied Physics, 30(Part 1, No. 3):442–446. https://doi.org/10.1143/JJAP.30.442 CrossRefGoogle Scholar
  31. Yeh MH, Ho SJ, Chen GH, et al., 2016. Toward low-cost large-area CIGS thin film III: effect of Se concentration on crystal growth and defect formation of sequentially electrodeposited CIGS thin films. Solar Energy, 132:547–557. https://doi.org/10.1016/j.solener.2016.03.029 CrossRefGoogle Scholar
  32. Zhang HX, Hong RJ, 2016. CIGS absorbing layers prepared by RF magnetron sputtering from a single quaternary target. Ceramics International, 42(13):14543–14547. https://doi.org/10.1016/j.ceramint.2016.06.067 CrossRefGoogle Scholar
  33. Zhang Z, Li J, Wang M, et al., 2010. Influence of annealing conditions on the structure and compositions of electrodeposited CuInSe2 films. Solid State Communications, 150(47–48):2346–2349. https://doi.org/10.1016/j.ssc.2010.09.048 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceChina Agricultural UniversityBeijingChina

Personalised recommendations