Skip to main content
Log in

Experimental study on the minimum design metal temperature of Q345R steel

Q345R 钢最低设计金属温度的试验研究

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

As the material most widely used in manufacturing pressure vessels in China, Q345R steel has been permitted in ASME Code Case 2642 to be used for fabricating pressure vessels since 2010. It is listed in the material group corresponding to the exemption curve A for Charpy V-notched (CVN) impact test requirements. However, recent studies indicate that the mechanical property of Q345R has been underestimated and the curve A classification is over-conservative. In this paper, the K1dT relationship for two batches of Q345R produced in 2009 and 2014 is empirically obtained by curve–fitting and regression analysis from a large amount of CVN data based on K1c–CVN correlations and the temperature-shift method. Based on the theory of derivation for the ASME exemption curves, the specific exemption curves for the two batches are generated by combining the K1dT relationship and the K1(min)t relationship developed from the failure assessment diagram (FAD). Such exemption curve is not in parallel to the ASME curves, and lies over curve C and between curves B and D, but better reflects the actual toughness and expands the impact test exemption area, especially for small components with a thickness less than 20 mm. Furthermore, the method presented in this paper (the Materials Properties Council (MPC) method) is compared with the master curve (MC) method, concluding that the two methods are reliable for determining the exemption curve, and the MC method expands a further area for the impact test exemption and results in a lower minimum design metal temperature (MDMT) than the MPC method.

中文概要

目的

Q345R 是中国应用最多、最广泛的压力容器钢板 材料,其低温韧性在国际上被严重低估。本文旨 在通过大量试验研究,探明Q345R 在低温下的实 际韧性表征,得到其特有的冲击试验豁免曲线, 并确定其合适的使用温度范围。

创新点

1. 基于大量低温试验数据,并考虑应变率的影响, 得到了Q345R 特有的冲击试验豁免曲线;2. 采用 主曲线方法代替纯冲击试验方法评价Q345R 低 温韧性,得到了基于主曲线方法的Q345R 豁免曲 线;3. 通过比较两类韧性评价方法所得的豁免曲 线,最终确定合适的Q345R 使用温度范围。

方法

1. 利用试验获得大量的冲击试验数据(图3),通 过计算K1(min)t 关系(图5)和KcT 关系(图9), 并考虑应变率的影响(公式(18)),得到Q345R 特有的冲击试验豁免曲线(图10);2. 利用试验 方法获得Q345R 的主曲线(图4),并用其代替 原来的KcT 关系,得到基于主曲线方法的Q345R 豁免曲线(图14);3. 比较两类方法的K1dT 关 系(图13)和豁免曲线(图14)。

结论

1. Q345R 的低温韧性在国际上被严重低估;2. 得 到了Q345R 特有的冲击试验豁免曲线及其合适 的使用温度范围;3. 主曲线方法的引入能进一步 拓展Q345R 的使用温度范围。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASME (American Society of Mechanical Engineers), 2007. Fitness-for-Service, 2nd Edition, API 579-1/ASME FFS-1:2007. The American Petroleum Institute, Washington DC,USA.

  • ASME (American Society of Mechanical Engineers), 2010. Boiler and Pressure Vessel Code Case, B&PV Code Case 2642:2010. ASTM International, New York, USA.

  • ASME (American Society of Mechanical Engineers), 2015a. Boiler and Pressure Vessel Code Section VIII Division 1: Rules for Construction of Pressure Vessels, BPVC VIII-1:2015. ASTM International, New York, USA.

  • ASME (American Society of Mechanical Engineers), 2015b. ASME Boiler and Pressure Vessel Code Section VIII Division 2: Alternative Rules Rules for Construction of Pressure Vessels, BPVC VIII-2:2015. ASTM International, New York, USA.

  • ASTM (American Society for Testing and Materials), 2012. Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials, E399-12e3:2012. ASTM International, West Conshohocken, USA.

  • ASTM (American Society for Testing and Materials), 2016. Standard Test Method for Determination of Reference Temperature, To, for Ferritic Steels in the Transition Range, E1921:2016. ASTM International, West Conshohocken, USA.

  • Barsom JM, 1975. Development of the AASHTO fracturetoughness requirements for bridge steels. Engineering Fracture Mechanics, 7(3):605–618. https://doi.org/10.1016/0013-7944(75)90060-0.

    Article  Google Scholar 

  • Barsom JM, Rolfe ST, 1970. Correlations between K Ic and Charpy V-notch test results in the transition-temperature range. In: Driscoll DE(Ed.), ASTM STP 466 Impact Testing of Metals. ASTM International, West Conshohocken, USA, p.281–302. https://doi.org/10.1520/STP32067S

    Chapter  Google Scholar 

  • BSI (British Standard Institution), 2005. Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, BS7910:2005. British Standard Institution, London, UK.

  • Cao Y, Hui H, Xuan F, 2008. Study on fracture toughness of 16MnR steel in the transition-temperature region using the master curve method. Pressure Vessel Technology, 25(12):10–21(in Chinese). https://doi.org/10.3969/j.issn.1001-4837.2008.12.003

    Google Scholar 

  • Cui Q, Hui H, Li P, 2015. Applicability of the ASME exemption curve for Chinese pressure vessel steel Q345R. Journal of Pressure Vessel Technology, 137(6):061602. https://doi.org/10.1115/1.4030673

    Article  Google Scholar 

  • Gui L, Shou B, Xiu T, 2016. Estimation of Q345R fracture toughness based on master curve. Pressure Vessel Technology, 33(2):10–16(in Chinese). https://doi.org/10.3969/j.issn.1001-4837.2016.02.002

    Google Scholar 

  • Marandet B, Sanz G, 1977. Evaluation of the toughness of thick medium-strength steels by using linear elastic fracture mechanics and correlations between Klc and Charpy V-Notch. ASTM Special Technical Publication, 631:72–95. https://doi.org/10.1520/STP35533S.

    Google Scholar 

  • Prager M, Osage DA, Staats J, 2010. Development of Material Fracture Toughness Rules for the ASME B&PV Code, Section VIII, Division 2, Welding Research Council Bulletin 528. The Welding Research Council, New York, USA.

    Google Scholar 

  • PVRC (Pressure Vessel Research Committee), 1972. PVRC Recommendations on Toughness Requirements for Ferritic Materials, Welding Research Council Bulletin 175. The Welding Research Council, New York, USA.

  • Roberts R, Newton C, 1981. Interpretive Report on Smallscale Test Correlations with KIc Data, Welding Research Council Bulletin 265. The Welding Research Council, New York, USA.

    Google Scholar 

  • Rolfe ST, Novak SR, 1970. Slow-bend KIc testing of mediumstrength high-toughness steels. In: Brown W (Ed.), ASTM STP 463 Review of Development in Plane Strain Fracture Toughness Testing. ASTM International, West Conshohocken, USA, p.124–159. https://doi.org/10.1520/STP33665S

    Chapter  Google Scholar 

  • SAC (Standardization Administration of the People’s Republic of China), 1998. Steel and Steel Product: Location and Preparation of Test Pieces for Mechanical Testing, GB/T 2975:1998. SAC, Beijing, China (in Chinese).

  • SAC (Standardization Administration of the People’s Republic of China), 2014. Steel Plates for Boilers and Pressure Vessels, GB/T 713:2014. SAC, Beijing, China (in Chinese).

  • Sailors RH, Corten HT, 1971. Relationship between material fracture toughness using fracture mechanics and transition temperature tests. In: Corten H (Ed.), ASTM STP 514 Fracture Toughness: Part II. ASTM International, West Conshohocken, USA, p.164–191.

    Google Scholar 

  • Shu X, Zheng J, Shou B, 2013. Experimental investigation on minimum design metal temperature of Q345R steel. In: Pressure Vessels and Piping Division. American Society of Mechanical Engineers, Paris, France.https://doi.org/10.1115/PVP2013-97763

    Google Scholar 

  • Taylor N, Minnebo P, Siegele D, et al., 2006. Use of master curve technology for assessing shallow flaws in a reactor pressure vessel material. In: Pressure Vessels and Piping Division. American Society of Mechanical Engineers, Vancouver, Canada. https://doi.org/10.1115/PVP2006-ICPVT-11-93640

    Google Scholar 

  • Thorby PN, Ferguson WG, 1976. Fracture toughness of HY60. Materials Science and Engineering, 22(2):177–184. https://doi.org/10.1016/0025-5416(76)90151-8

    Article  Google Scholar 

  • Wallin K, 1984. The scatter in KIc-results. Engineering Fracture Mechanics, 19(6):1085–1093. https://doi.org/10.1016/0013-7944(84)90153-X

    Article  Google Scholar 

  • Wallin K, 2007. Use of the master curve methodology for real three dimensional cracks. Nuclear Engineering and Design, 237(12-13):1388–1394. https://doi.org/10.1016/j.nucengdes.2006.09.034

    Article  Google Scholar 

  • Wallin K, 2010. Structural integrity assessment aspects of the master curve methodology. Engineering Fracture Mechanics, 77(2):285–292. https://doi.org/10.1016/j.engfracmech.2009.02.010

    Article  Google Scholar 

  • Wallin K, Laukkanen A, 2008. New developments of the Wallin, Saario, Torronen cleavage fracture model. Engineering Fracture Mechanics, 75(11):3367–3377. https://doi.org/10.1016/j.engfracmech.2007.07.018

    Article  Google Scholar 

  • Wallin K, Rintamaa R, Nagel G, 2001. Conservatism of ASME KIR-reference curve with respect to crack arrest. Nuclear Engineering and Design, 206(2-3):185–199. https://doi.org/10.1016/S0029-5493(00)00434-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Yang Zheng.

Additional information

Project supported by the National Key Research and Development Program of China (No.2016YFC0801905).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, XY., Wu, YZ., Zheng, JY. et al. Experimental study on the minimum design metal temperature of Q345R steel. J. Zhejiang Univ. Sci. A 19, 491–504 (2018). https://doi.org/10.1631/jzus.A1700188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1700188

Key words

关键词

CLC number

Navigation