Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 19, Issue 2, pp 171–174 | Cite as

Laser frequency locking with low pump field saturated absorption spectroscopy

  • Shang-qing Liang
  • Yun-fei Xu
  • Qiang Lin
Correspondence

用于激光锁频的低泵浦场饱和吸收光谱

概要

目的

利用激光透过原子气室时的端面反射产生泵浦光,实现低泵浦场的饱和吸收光谱,提高饱和吸收光谱锁频方法对运动平台的适应性。

创新点

1. 在饱和吸收光谱中实现无需额外反射镜调节的泵浦光与探测光的重合方法;2. 在饱和吸收光谱中实现强探测-弱泵浦的实验方式。

方法

1. 利用原子气室端面反射光作为泵浦光,实现低泵浦场的饱和吸收光谱装置(图1 和2);2. 研究实现低泵浦场的饱和吸收光谱所需的角度控制精度(图4);3. 研究采用此方法的激光频率锁定效果(图5 和6)。

结论

1. 低泵浦场的饱和吸收光谱方法可以满足激光频率锁定的要求;2. 低泵浦场的饱和吸收光谱装置相比传统装置,没有多余的可调节的反射镜,装置更加简洁,锁频效果受环境影响更小,对运动平台的适应性更强。

关键词

饱和吸收光谱 低泵浦场 长漂 运动平台 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bidel Y, Carraz O, Charriere R, et al., 2013. Compact cold atom gravimeter for field applications. Applied Physics Letters, 102(14):25–61. https://doi.org/10.1063/1.4801756CrossRefGoogle Scholar
  2. Biesheuvel J, Noom DW, Salumbides EJ, et al., 2013. Widely tunable laser frequency offset lock with 30 GHz range and 5 THz offset. Optics Express, 21(12):14008–14016. https://doi.org/10.1364/OE.21.014008CrossRefGoogle Scholar
  3. Debs JE, Robins NP, Lance A, et al., 2008. Piezo-locking a diode laser with saturated absorption spectroscopy. Applied Optics, 47(28):5163–5166. https://doi.org/10.1364/AO.47.005163CrossRefGoogle Scholar
  4. Fratter I, Leger JM, Bertrand F, et al., 2016. Swarm absolute scalar magnetometers first in-orbit results. Acta Astronautica, 4:2465–2474. https://doi.org/10.1016/j.actaastro.2015.12.025Google Scholar
  5. Li L, Qu QZ, Wang B, et al., 2016. Initial tests of a rubidium space cold atom clock. Chinese Physics Letters, 33(6): 063201. https://doi.org/10.1088/0256-307X/33/6/063201CrossRefGoogle Scholar
  6. Liu B, Chen C, Xia J, et al., 2013. Design and implementation of vibration isolation system for mobile doppler wind LIDAR. Journal of the Optical Society of Korea, 17(1): 103–108. https://doi.org/10.3807/JOSK.2013.17.1.103CrossRefGoogle Scholar
  7. Martins WS, Grilo M, Brasileiro M, et al., 2010. Diode laser frequency locking using Zeeman effect and feedback in temperature. Applied Optics, 49(5):871–874. https://doi.org/10.1364/AO.49.000871CrossRefGoogle Scholar
  8. Wan JH, Liu C, Wang YH, 2016. Laser frequency locking based on the normal and abnormal saturated absorption spectroscopy of 87Rb. Chinese Physics B, 25(4):145–149. https://doi.org/10.1088/1674-1056/25/4/044204CrossRefGoogle Scholar
  9. Yang G, Wang J, Zhan M, et al., 2010. Bichromatic laser frequency stabilization with Doppler effect and polarization spectroscopy. Chinese Optics Letters, 8(11):1095–1097. https://doi.org/10.3788/COL20100811.1095CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Optics, Department of PhysicsZhejiang UniversityHangzhouChina
  2. 2.Center for Optics & Optoelectronics Research, College of ScienceZhejiang University of TechnologyHangzhouChina

Personalised recommendations