Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 19, Issue 5, pp 384–398 | Cite as

Numerical investigation of flow characteristics around two side-by-side cylinders by immersed boundary-lattice Boltzmann flux solver

  • Xiao-di Wu
  • Hua-ping Liu
  • Fu Chen
Article
  • 30 Downloads

Abstract

In this paper, to study the characteristics of the flow in a laminar regime, an immersed boundary-lattice Boltzmann flux solver (IB-LBFS) is applied to numerically simulate the unsteady viscous flows around two fixed and rotating circular cylinders in side-by-side arrangement. This method applies finite volume discretization to solve the macroscopic governing equations with the flow variables defined at cell centers. At the cell interface, numerical fluxes are physically evaluated by a local lattice Boltzmann solution. In addition, the no-slip boundary condition is accurately imposed by using the implicit boundary condition-enforced immersed boundary method. Due to the simplicity and high efficiency of IB-LBFS on non-uniform grids, it is suitable for simulating fluid flows with complex geometries and moving boundaries. Firstly, numerical simulations of laminar flow past two side-by-side cylinder are performed with different gap spacings at Reynolds numbers of 100 and 200. The simulation results show that a small gap spacing induces a biased flow and forms an irregular big wake behind two cylinders at a low Reynolds number. As the gap spacing increases, an in-phase or anti-phase flow is observed. Then, the effects of the main important parameters on flow characteristics are analyzed for flow past two side-by-side rotating cylinders, including the rotational speed, Reynolds number, and gap spacing. As the rotational speed is increased, the numerical results illustrate that unsteady wakes are suppressed and the flow becomes steady. As the gap spacing is increased, two separate vortex streets behind each cylinder are formed with a definite phase relationship and single shedding frequency.

Key words

Immersed boundary method (IBM) Lattice Boltzmann flux solver (LBFS) Moving boundary Side-by-side cylinders 

基于浸入边界-格子波尔兹曼通量求解法的并列双圆柱流动特性数值研究

摘要

目的

本文旨在应用新型数值求解方法,即浸入边界-格子波尔兹曼通量求解法,研究并列双圆柱流动特性,并探索该数值方法在工程应用中的可行性。

创新点

1. 将浸入边界法与格子波尔兹曼求解法相结合,简单并高效地实现在非均匀直角网格下求解不可压流动以及动边界问题;2. 应用浸入边界-格子波尔兹曼求解法研究并列双圆柱流场特性。

方法

1. 通过理论推导,建立状态变量和通量与格子波尔兹曼方程中粒子密度分布函数之间的关系(公式(8)~(10));2. 采用强制浸入边界法处理流固界面使固壁表面满足无滑移边界条件,实现在笛卡尔网格下求解运动边界问题;3. 通过数值模拟,探讨雷诺数和圆柱间距对静止双圆柱受力及流场尾流特性的影响以及雷诺数、间距和旋转速度对旋转并列双圆柱受力及尾流特性的影响规律。

结论

1. 浸入边界-格子波尔兹曼求解法可以简单实现采用非贴体网格求解不可压流动及动边界问题。2. 对于并列静止双圆柱,随着间距的增加,双圆柱尾流场的相互作用逐渐消失,尾迹由无规则性转变为规则的同相位流动或反向流动;雷诺数影响圆柱受力系数。3. 对于并列旋转双圆柱,雷诺数对旋转圆柱受力影响较弱;旋转速度可以抑制单圆柱尾流场的非定常效应;随着圆柱间距的增加,双圆柱后方形成固定的相位关系以及同一频率的脱落涡。

关键词

浸入边界法 格子波尔兹曼通量求解法 运动边界 并列圆柱 

CLC number

O35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afgan I, Kahil Y, Benhamadouche S, et al., 2011. Large eddy simulation of the flow around single and two side-by-side cylinders at subcritical Reynolds numbers. Physics of Fluids, 23(7):075101. https://doi.org/10.1063/1.3596267 CrossRefGoogle Scholar
  2. Alam MM, Moriya M, Sakamoto H, 2003. Aerodynamic characteristics of two side-by-side circular cylinders and application of wavelet analysis on the switching phenomenon. Journal of Fluids and Structures, 18(3-4): 325–346. https://doi.org/10.1016/j.jfluidstructs.2003.07.005 CrossRefGoogle Scholar
  3. Alam MM, Zhou Y, 2007. Flow around two side-by-side closely spaced circular cylinders. Journal of Fluids and Structures, 23(5):799–805. https://doi.org/10.1016/j.jfluidstructs.2006.12.002 CrossRefGoogle Scholar
  4. Behzad GD, Hamed HG, 2009. Numerical simulation of flow through tube bundles in in-line square and general staggered arrangements. International Journal of Numerical Methods for Heat and Fluid Flow, 19(8):1038–1062. https://doi.org/10.1108/09615530910994487 CrossRefGoogle Scholar
  5. Carini M, Giannetti F, Auteri F, 2014. On the origin of the flip-flop instability of two side-by-side cylinder wakes. Journal of Fluid Mechanics, 742:552–576. https://doi.org/10.1017/jfm.2014.9 MathSciNetCrossRefGoogle Scholar
  6. Chan AS, Jameson A, 2010. Suppression of the unsteady vortex wakes of a circular cylinder pair by a doublet-like counter-rotation. International Journal for Numerical Methods in Fluids, 63(1):22–39. https://doi.org/10.1002/fld.2075 zbMATHGoogle Scholar
  7. Chan AS, Dewey PA, Jameson A, et al., 2011. Vortex suppression and drag reduction in the wake of counterrotating cylinders. Journal of Fluid Mechanics, 679: 343–382. https://doi.org/10.1017/jfm.2011.134 CrossRefzbMATHGoogle Scholar
  8. Choi JI, Oberoi RC, Edwards JR, et al., 2007. An immersed boundary method for complex incompressible flows. Journal of Computational Physics, 224(2):757–784. https://doi.org/10.1016/j.jcp.2006.10.032 MathSciNetCrossRefzbMATHGoogle Scholar
  9. Ding H, Shu C, Yeo KS, et al., 2007. Numerical simulation of flows around two circular cylinders by mesh-free least square-based finite difference methods. International Journal for Numerical Methods in Fluids, 53(2):305–332. https://doi.org/10.1002/fld.1281 CrossRefzbMATHGoogle Scholar
  10. Feng ZG, Michaelides EE, 2004. The immersed boundarylattice Boltzmann method for solving fluid-particles interaction problems. Journal of Computational Physics, 195(2):602–628. https://doi.org/10.1016/j.jcp.2003.10.013 CrossRefzbMATHGoogle Scholar
  11. Feng ZG, Michaelides EE, 2005. Proteus: a direct forcing method in the simulations of particulate flows. Journal of Computational Physics, 202(1):20–51. https://doi.org/10.1016/j.jcp.2004.06.020 CrossRefzbMATHGoogle Scholar
  12. Gao YY, Yu DY, Tan S, et al., 2010. Experimental study on the near wake behind two side-by-side cylinders of unequal diameters. Fluid Dynamics Research, 42(5):055509. https://doi.org/10.1088/0169-5983/42/5/055509 CrossRefzbMATHGoogle Scholar
  13. Harichandan AB, Roy A, 2010. Numerical investigation of low Reynolds number flow past two and three circular cylinders using unstructured grid CFR scheme. International Journal of Heat and Fluid Flow, 31(2):154–171. https://doi.org/10.1016/j.ijheatfluidflow.2010.01.007 CrossRefGoogle Scholar
  14. Hesam SM, Navid N, Behzad GD, 2011. Numerical simulation of flow over two side-by-side circular cylinder. Journal of Hydrodynamics, Ser. B, 23(6):792–805. https://doi.org/10.1016/S1001-6058(10)60178-3 CrossRefGoogle Scholar
  15. Kang S, Choi H, Lee S, 1999. Laminar flow past a rotating cylinder. Physics of Fluids, 11(11):3312–3321. https://doi.org/10.1063/1.870190 CrossRefzbMATHGoogle Scholar
  16. Kim S, Alam MM, 2015. Characteristics and suppression of flow-induced vibrations of two side-by-side circular cylinders. Journal of Fluids and Structures, 54:629–642. https://doi.org/10.1016/j.jfluidstructs.2015.01.004 CrossRefGoogle Scholar
  17. Kumar S, Gonzalez B, Probst O, 2011. Flow past two rotating cylinders. Physics of Fluids, 23(1):014102. https://doi.org/10.1063/1.3528260 CrossRefGoogle Scholar
  18. Lai MC, Peskin CS, 2000. An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. Journal of Computational Physics, 160(2): 705–719. https://doi.org/10.1006/jcph.2000.6483 MathSciNetCrossRefzbMATHGoogle Scholar
  19. Liu C, Zheng X, Sung CH, 1998. Preconditioned multigrid methods for unsteady incompressible flows. Journal of Computational Physics, 139(1):35–57. https://doi.org/10.1006/jcph.1997.5859 CrossRefzbMATHGoogle Scholar
  20. Mohany A, Arthurs D, Bolduc M, et al., 2014. Numerical and experimental investigation of flow-acoustic resonance of side-by-side cylinders in a duct. Journal of Fluids and Structures, 48:316–331. https://doi.org/10.1016/j.jfluidstructs.2014.03.015 CrossRefGoogle Scholar
  21. Qian YH, D’Humières D, Lallemand P, 1992. Lattice BGK model for Navier-Stokes equation. Europhysics Letters (EPL), 17(6):479–484. https://doi.org/10.1209/0295-5075/17/6/001 CrossRefzbMATHGoogle Scholar
  22. Shu C, Wang Y, Teo CJ, et al., 2015. Development of lattice Boltzmann flux solver for simulation of incompressible flows. Advances in Applied Mathematics and Mechanics, 6(04):436–460. https://doi.org/10.4208/aamm.2014.4.s2 MathSciNetCrossRefGoogle Scholar
  23. Song FL, Tseng SY, Hsu SW, et al., 2015. Gap ratio effect on flow characteristics behind side-by-side cylinders of diameter ratio two. Experimental Thermal and Fluid Science, 66:254–268. https://doi.org/10.1016/j.expthermflusci.2015.04.001 CrossRefGoogle Scholar
  24. Stojkovic D, Breuer M, Durst F, 2002. Effect of high rotation rates on the laminar flow around a circular cylinder. Physics of Fluids, 14(9):3160–3178. https://doi.org/10.1063/1.1492811 MathSciNetCrossRefzbMATHGoogle Scholar
  25. Supradeepan K, Roy A, 2014. Characterisation and analysis of flow over two side by side cylinders for different gaps at low Reynolds number: a numerical approach. Physics of Fluids, 26(6):063602. https://doi.org/10.1063/1.4883484 CrossRefGoogle Scholar
  26. Supradeepan K, Roy A, 2015. Low Reynolds number flow characteristics for two side-by-side rotating cylinders. Journal of Fluids Engineering, 137(10):101204. https://doi.org/10.1115/1.4030486 CrossRefGoogle Scholar
  27. Vakil A, Green SI, 2011. Two-dimensional side-by-side circular cylinders at moderate Reynolds numbers. Computers & Fluids, 51(1):136–144. https://doi.org/10.1016/j.compfluid.2011.08.008 CrossRefzbMATHGoogle Scholar
  28. Wang Y, Shu C, Teo CJ, et al., 2015a. An immersed boundarylattice Boltzmann flux solver and its applications to fluidstructure interaction problems. Journal of Fluids and Structures, 54:440–465. https://doi.org/10.1016/j.jfluidstructs.2014.12.003 CrossRefGoogle Scholar
  29. Wang Y, Shu C, Huang HB, et al., 2015b. Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio. Journal of Computational Physics, 280:404–423. https://doi.org/10.1016/j.jcp.2014.09.035 MathSciNetCrossRefzbMATHGoogle Scholar
  30. Wang Y, Shu C, Teo CJ, et al., 2016. An efficient immersed boundary-lattice Boltzmann flux solver for simulation of 3D incompressible flows with complex geometry. Computers & Fluids, 124:54–66. https://doi.org/10.1016/j.compfluid.2015.10.009 MathSciNetCrossRefGoogle Scholar
  31. Wang Y, Shu C, Yang LM, et al., 2017. On the immersed boundary-lattice Boltzmann simulations of incompressible flows with freely moving objects. International Journal for Numerical Methods in Fluids, 83(4):331–350. https://doi.org/10.1002/fld.4270 MathSciNetCrossRefGoogle Scholar
  32. Wang ZJ, Zhou Y, 2005. Vortex interactions in a two side-byside cylinder near-wake. International Journal for Heat and Fluid Flow, 26(3):362–377. https://doi.org/10.1016/j.ijheatfluidflow.2004.10.006 CrossRefGoogle Scholar
  33. Williamson CHK, 1985. Evolution of a single wake behind a pair of bluff bodies. Journal of Fluid Mechanics, 159: 1–18. https://doi.org/10.1017/S002211208500307X CrossRefGoogle Scholar
  34. Wu J, Shu C, 2009. Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications. Journal of Computational Physics, 228(6): 1963–1979. https://doi.org/10.1016/j.jcp.2008.11.019 CrossRefzbMATHGoogle Scholar
  35. Wu J, Shu C, 2010. An improved immersed boundary-lattice Boltzmann method for simulating three-dimensional incompressible flows. Journal of Computational Physics, 229(13):5022–5042. https://doi.org/10.1016/j.jcp.2010.03.024 CrossRefzbMATHGoogle Scholar
  36. Yoon HS, Chun HH, Kim JH, et al., 2009. Flow characteristics of two rotating side-by-side circular cylinder. Computers & Fluids, 38(2):466–474. https://doi.org/10.1016/j.compfluid.2008.09.002 CrossRefzbMATHGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Energy Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations