Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 19, Issue 4, pp 315–328 | Cite as

Development of a NO x emission model with seven optimized input parameters for a coal-fired boiler

  • Yue-lan Wang
  • Zeng-yi Ma
  • Hai-hui You
  • Yi-jun Tang
  • Yue-liang Shen
  • Ming-jiang Ni
  • Yong Chi
  • Jian-hua Yan
Article

Abstract

Optimizing the operation of coal-fired power plants to reduce nitrogen oxide (NO x ) emissions requires accurate modeling of the NO x emission process. The careful selection of input parameters not only forms the basis of accurate modeling, but can also be used to reduce the complexity of the model. The present study employs the least squares support vector machine-supervised learning method to model NO x emissions based on historical real time data obtained from a 1000-MW once-through boiler. The initial input parameters are determined by expert knowledge and operational experience, while the final input parameters are obtained by sensitivity analysis, where the variation in model accuracy for a given set of data is analyzed as one or several input parameters are successively omitted from the calculations, while retaining all other parameters. Here, model accuracy is evaluated according to the mean relative error (MRE). This process reduces the parameters required for NO x emission modeling from an initial number of 33 to 7, while the corresponding MRE is reduced from 3.09% to 2.23%. Moreover, a correlation of 0.9566 between predicted and measured values was obtained by applying the model with just these seven input parameters to a validation dataset. As such, the proposed method for selecting input parameters serves as a reference for related studies.

Keywords

Nitrogen oxide (NOxCoal-fired boiler Least squares support vector machine Input parameters Sensitivity analysis 

基于七个运行参数建立煤粉锅炉NO x 排放模型

概要

目的

采用最小二乘支持向量机建立煤粉锅炉NOx 排放 模型,即建立输入参数与NOx 之间的关系。合理 选择输入参数不仅会降低模型的复杂度,而且会 提高模型的精度。为此,本文探讨各输入参数对 模型的影响,并最终保留合适数量的输入参数建 立NOx 排放模型。

创新点

1. 采用最小二乘支持向量机建立NOx 排放模型; 2. 通过敏感性分析确定模型的最终输入参数。

方法

1. 根据专家知识及运行经验确定NOx 排放模型的 初始输入参数(图2);2. 根据锅炉的运行历史数 据,采用最小二乘支持向量机建立NOx排放模型; 3. 采用敏感性分析方法确定NOx排放模型的最终 输入参数(图11),并用其进行建模以验证模型 的有效性。

结论

1. 采用最小二乘支持向量机建立的1000 MW 超 超临界前后墙对冲锅炉NOx 排放模型,可靠性和 精度较高;2. 经过敏感性分析,NOx 排放模型的 输入参数由初始的33 个降为7 个,模型的复杂度 降低且精度提高。

关键词

氮氧化物 煤粉锅炉 最小二乘支持向量机 输入参数 敏感性分析 

CLC number

TK229.6 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmadi MA, 2015. Connectionist approach estimates gas–oil relative permeability in petroleum reservoirs: application to reservoir simulation. Fuel, 140:429–439. https://doi.org/10.1016/j.fuel.2014.09.058CrossRefGoogle Scholar
  2. Ahmadi MA, Ebadi M, 2014. Evolving smart approach for determination dew point pressure through condensate gas reservoirs. Fuel, 117:1074–1084. https://doi.org/10.1016/j.fuel.2013.10.010CrossRefGoogle Scholar
  3. Ahmadi MA, Bahadori A, 2015a. A LSSVM approach for determining well placement and conning phenomena in horizontal wells. Fuel, 153:276–283. https://doi.org/10.1016/j.fuel.2015.02.094CrossRefGoogle Scholar
  4. Ahmadi MA, Bahadori A, 2015b. Prediction performance of natural gas dehydration units for water removal efficiency using a least square support vector machine. International Journal of Ambient Energy, 37(5):486–494. https://doi.org/10.1080/01430750.2015.1004105CrossRefGoogle Scholar
  5. Ahmadi MA, Ebadi M, Hosseini SY, 2014a. Prediction breakthrough time of water coning in the fractured reservoirs by implementing low parameter support vector machine approach. Fuel, 117:579–589. https://doi.org/10.1016/j.fuel.2013.09.071CrossRefGoogle Scholar
  6. Ahmadi MA, Ebadi M, Marghmaleki PS, et al., 2014b. Evolving predictive model to determine conden sate-togas ratio in retrograded condensate gas reservoirs. Fuel, 124:241–257. https://doi.org/10.1016/j.fuel.2014.01.073CrossRefGoogle Scholar
  7. Ahmadi MA, Ebadi M, Yazdanpanah A, 2014c. Robust intelligent tool for estimation dew point pressure in retrograded condensate gas reservoirs: application of particle swarm optimization. Journal of Petroleum Science and Engineering, 123:7–19. https://doi.org/10.1016/j.petrol.2014.05.023CrossRefGoogle Scholar
  8. Ahmadi MA, Masoumi M, Askarinezhad R, 2014d. Evolving connectionist model to monitor the efficiency of an in situ combustion process: application to heavy oil recovery. Energy Technology, 2(9–10): 811–818. https://doi.org/10.1002/ente.201402043CrossRefGoogle Scholar
  9. Ahmadi MA, Zahedzadeh M, Shadizadeh SR, et al., 2015a. Connectionist model for predicting minimum gas miscibility pressure: application to gas injection process. Fuel, 148:202–211. https://doi.org/10.1016/j.fuel.2015.01.044CrossRefGoogle Scholar
  10. Ahmadi MA, Masoumi M, Askarinezhad R, 2015b. Evolving smart model to predict the combustion front velocity for in situ combustion. Energy Technology, 3(2):128–135. https://doi.org/10.1002/ente.201402104CrossRefGoogle Scholar
  11. Ahmadi MA, Hasanvand MZ, Bahadori A, 2015c. A leastsquares support vector machine approach to predict temperature drop accompanying a given pressure drop for the natural gas production and processing systems. International Journal of Ambient Energy, 38(2):122–129. https://doi.org/10.1080/01430750.2015.1055515CrossRefGoogle Scholar
  12. Ahmadi MA, Lee M, Bahadori M, 2015d. Prediction of a solid desiccant dehydrator performance using least squares support vector machines algorithm. Journal of the Taiwan Institute of Chemical Engineers, 50:115–122. https://doi.org/10.1016/j.jtice.2014.12.004CrossRefGoogle Scholar
  13. Ahmadi MH, Ahmadi MA, Sadatsakkak SA, et al., 2015. Connectionist intelligent model estimates output power and torque of stirling engine. Renewable and Sustainable Energy Reviews, 50:871–883. https://doi.org/10.1016/j.rser.2015.04.185CrossRefGoogle Scholar
  14. Ahmed F, Cho HJ, Kim JK, et al., 2015. A real-time model based on least squares support vector machines and output bias update for the prediction of NOx emission from coal-fired power plant. Korean Journal of Chemical Engineering, 32(6):1029–1036. https://doi.org/10.1007/s11814-014-0301-2CrossRefGoogle Scholar
  15. Cen KF, Yao Q, Luo ZY, et al., 2003. Advanced Combustion. Zhejiang University Press, Hangzhou, China (in Chinese).Google Scholar
  16. Choi CR, Kim CN, 2009. Numerical investigation on the flow, combustion and NOx emission characteristics in a 500 MWe tangentially fired pulverized-coal boiler. Fuel, 88(9):1720–1731. https://doi.org/10.1016/j.fuel.2009.04.001CrossRefGoogle Scholar
  17. Choi GP, Yoo KHY, Back JH, et al., 2017. Estimation of LOCA break size using cascaded fuzzy neural networks. Nuclear Engineering and Technology, 49(3):495–503. https://doi.org/10.1016/j.net.2016.11.001CrossRefGoogle Scholar
  18. Eberhart RC, Shi Y, Kennedy J, 2001. Swarm Intelligence. Morgan Kaufmann, San Francisco, USA.Google Scholar
  19. Fan WD, Lin ZC, Li YY, et al., 2010. Experimental flow field characteristics of OFA for large-angle counter flow of fuel-rich jet combustion technology. Applied Energy, 87(8):2737–2745. https://doi.org/10.1016/j.apenergy.2010.02.012CrossRefGoogle Scholar
  20. Fletcher R, 1987. Practical Methods of Optimization. John Wiley & Son, Chichester and New York.zbMATHGoogle Scholar
  21. Gu YP, Zhao WJ, Wu ZS, 2011. Online adaptive least squares support vector machine and its application in utility boiler combustion optimization systems. Journal of Process Control, 21(7):1040–1048. https://doi.org/10.1016/j.jprocont.2011.06.001CrossRefGoogle Scholar
  22. Hattori Y, Otsuka M, 2013. Modeling of feed-forward control using the partial least squares regression method in the tablet compression process. International Journal of Pharmaceutics, 524(1–2): 407–413. https://doi.org/10.1016/j.ijpharm.2017.04.004Google Scholar
  23. Hill SC, Smoot LD, 2000. Modeling of nitrogen oxides formation and destruction in combustion systems. Progress in Energy and Combustion Science, 26(4–6): 417–458. https://doi.org/10.1016/S0360-1285(00)00011-3CrossRefGoogle Scholar
  24. IEA (International Energy Agency), 2015. Key World Energy Statistic. IEA.Google Scholar
  25. Ilamathi P, Selladurai V, Balamurugan K, 2013. Modeling and optimization of unburned carbon in coal-fired boiler using artificial neural network and genetic algorithm. Journal of Energy Resources Technology, 135(3):032201. https://doi.org/10.1115/1.4023328CrossRefGoogle Scholar
  26. Junhom C, Weerapreeyakul N, Tanthanuch W, et al., 2017. Partial least squares regression and Fourier transform infrared (FTIR) microspectroscopy for prediction of resistance in hepatocellular carcinoma HepG2 cells. Experimental Cell Research, 351(1):82–90. https://doi.org/10.1016/j.yexcr.2016.12.027CrossRefGoogle Scholar
  27. Kennedy J, Eberhart R, 1995. Particle swarm optimization. Proceedings of ICNN’95–International Conference on Neural Networks, p.1942-1948. https://doi.org/10.1109/ICNN.1995.488968CrossRefGoogle Scholar
  28. Khajehsharifi H, Eskandari Z, Sareban N, 2017. Using partial least squares and principal component regression in simultaneous spectrophotometric analysis of pyrimidine bases. Arabian Journal of Chemistry, 10(S1): S141–S147. https://doi.org/10.1016/j.arabjc.2012.07.015CrossRefGoogle Scholar
  29. Khajehzadeh M, Taha MR, El-shafie A, et al., 2011. Modified particle swarm optimization for optimum design of spread footing and retaining wall. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(6):415–427. https://doi.org/10.1631/jzus.A1000252CrossRefGoogle Scholar
  30. Kuang M, Li ZQ, Wang ZH, et al., 2014. Combustion and NOx emission characteristics with respect to staged-air damper opening in a 600 MWe down-fired pulverized coal furnace under deep-air-staging conditions. Environmental Science & Technology, 48(1):837–844. https://doi.org/10.1021/es403165fCrossRefGoogle Scholar
  31. Laurain V, Tóth R, Piga D, et al., 2015. An instrumental least squares support vector machine for nonlinear system identification. Automatica, 54:340–347. https://doi.org/10.1016/j.automatica.2015.02.017MathSciNetCrossRefzbMATHGoogle Scholar
  32. Li ZQ, Liu ZC, Chen ZC, et al., 2013. Effect of angle of arch-supplied overfire air on flow, combustion characteristics and NOx emissions of a down-fired utility boiler. Energy, 59:377–386. https://doi.org/10.1016/j.energy.2013.06.020CrossRefGoogle Scholar
  33. Liu FD, He H, Zhang CB, et al., 2011. Mechanism of the selective catalytic reduction of NOx with NH3 over environmental-friendly iron titanate catalyst. Catalysis Today, 175(1):18–25. https://doi.org/10.1016/j.cattod.2011.02.049CrossRefGoogle Scholar
  34. Lv Y, Liu JZ, Yang TT, et al., 2013. A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler. Energy, 55:319–329. https://doi.org/10.1016/j.energy.2013.02.062CrossRefGoogle Scholar
  35. Lv Y, Yang TT, Liu JZ, 2015. An adaptive least squares support vector machine model with a novel update for NOx emission prediction. Chemometrics and Intelligent Laboratory Systems, 145:103–113. https://doi.org/10.1016/j.chemolab.2015.04.006CrossRefGoogle Scholar
  36. Malegori C, Malegori EJN, de Freitas ST, et al., 2017. Comparing the analytical performances of micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms. Talanta, 165:112–116. https://doi.org/10.1016/j.talanta.2016.12.035CrossRefGoogle Scholar
  37. Modlinski N, 2015. Numerical simulation of SNCR (selective non-catalytic reduction) process in coal fired grate boiler. Energy, 92:67–76. https://doi.org/10.1016/j.energy.2015.03.124CrossRefGoogle Scholar
  38. Rezaei H, Nazir R, Momeni E, 2016. Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(4):273–285. https://doi.org/10.1631/jzus.A1500033CrossRefGoogle Scholar
  39. Samui P, Kim D, Aiyer BG, 2015. Pullout capacity of small ground anchor: a least square support vector machine approach. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(4):295–301. https://doi.org/10.1631/jzus.A1200260CrossRefGoogle Scholar
  40. Smrekar J, Potočnik P, Senegačnik A, 2013. Multi-step-ahead prediction of NOx emissions for a coal-based boiler. Applied Energy, 106:89–99. https://doi.org/10.1016/j.apenergy.2012.10.056CrossRefGoogle Scholar
  41. Song JG, Romero CE, Yao Z, et al., 2017. A globally enhanced general regression neural network for on-line multiple emissions prediction of utility boiler. Knowledge-Based Systems, 118:4–14. https://doi.org/10.1016/j.knosys.2016.11.003CrossRefGoogle Scholar
  42. Suykens JAK, Vandewalle J, 1999. Least squares support vector machine classifiers. Neural Processing Letters, 9(3):293–300. https://doi.org/10.1023/A:1018628609742CrossRefzbMATHGoogle Scholar
  43. Suykens JAK, Vandewalle J, de Moor B, 2001. Optimal control by least squares support vector machine. Neural Networks, 14(1):23–25. https://doi.org/10.1016/S0893-6080(00)00077-0CrossRefGoogle Scholar
  44. Suykens JAK, Gestel TV, Brabanter JD, et al., 2002. Least squares support vector machines. Euphytica, 2(2):1599–1604.zbMATHGoogle Scholar
  45. Tang Y, Ma X, Lai Z, et al., 2012. NOx and SO2 emissions from municipal solid waste (MSW) combustion in CO2/O2 atmosphere. Energy, 40(1):300–306. https://doi.org/10.1016/j.energy.2012.01.070CrossRefGoogle Scholar
  46. Thissen U, Pepers M, Üstün B, et al., 2004. Comparing support vector machines to PLS for spectral regression applications. Chemometrics and Intelligent Laboratory Systems, 73(2):169–179. https://doi.org/10.1016/j.chemolab.2004.01.002CrossRefGoogle Scholar
  47. Wang QC, Zhang JZ, 2011. Wiener model identification and nonlinear model predictive control of a pH neutralization process based on Laguerre filters and least squares support vector machines. Journal of Zhejiang University-SCIENCE C (Computers & Electronics), 12(1):25–35. https://doi.org/10.1631/jzus.C0910779MathSciNetCrossRefGoogle Scholar
  48. Wang ZH, Zhou JH, Zhang YW, et al., 2005. Experiment and mechanism investigation on advanced reburning for NOx reduction: influence of CO and temperature. Journal of Zhejiang University-SCIENCE, 6B(3):187–194. https://doi.org/10.1631/jzus.2005.B0187CrossRefGoogle Scholar
  49. Wei ZB, Li XL, Xu LJ, et al., 2013. Comparative study of computational intelligence approaches for NOx reduction of coal-fired boiler. Energy, 55:683–692. https://doi.org/10.1016/j.energy.2013.04.007CrossRefGoogle Scholar
  50. Wei ZS, Du ZY, Lin ZH, et al., 2007. Removal of NOx by microwave reactor with ammonium bicarbonate and Ga-A zeolites at low temperature. Energy, 32(8):1455–1459. https://doi.org/10.1016/j.energy.2006.11.007CrossRefGoogle Scholar
  51. Wu F, Zhou H, Ren T, et al., 2009. Combining support vector regression and cellular genetic algorithm for multiobjective optimization of coal-fired utility boilers. Fuel, 88(10):1864–1870. https://doi.org/10.1016/j.fuel.2009.04.023CrossRefGoogle Scholar
  52. Xiang J, Wang PY, Su S, et al., 2015. Control of NO and Hg0 emissions by SCR catalysts from coal-fired boiler. Fuel Processing Technology, 135:168–173. https://doi.org/10.1016/j.fuproc.2014.12.044CrossRefGoogle Scholar
  53. Xu YY, Zhang Y, Liu FN, et al., 2014. CFD analysis on the catalyst layer breakage failure of an SCR-DeNOx system for a 350 MW coal-fired power plant. Computers & Chemical Engineering, 69:119–127. https://doi.org/10.1016/j.compchemeng.2014.07.012CrossRefGoogle Scholar
  54. Yin F, Luo ZH, Li Y, et al., 2017. Coal type identification based on the emission spectra of a furnace flame. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(2):113–123. https://doi.org/10.1631/jzus.A1500306CrossRefGoogle Scholar
  55. Zhang JH, Liu Y, 2017. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 18(3):272–286. https://doi.org/10.1631/jzus.B1600315CrossRefGoogle Scholar
  56. Zhang Y, Li H, Wang ZH, et al., 2015. A preliminary study on time series forecast of fair-weather atmospheric electric field with WT-LSSVM method. Journal of Electrostatics, 75:85–89. https://doi.org/10.1016/j.elstat.2015.03.005CrossRefGoogle Scholar
  57. Zhou H, Cen KF, Fan JR, 2004. Modeling and optimization of the NOx emission characteristics of a tangentially fired boiler with artificial neural networks. Energy, 29(1):167–183. https://doi.org/10.1016/j.energy.2003.08.004CrossRefGoogle Scholar
  58. Zhou H, Zhao JP, Zheng LG, et al., 2012. Modeling NOx emissions from coal-fired utility boilers using support vector regression with ant colony optimization. Engineering Applications of Artificial Intelligence, 25(1):147–158. https://doi.org/10.1016/j.engappai.2011.08.005CrossRefGoogle Scholar
  59. Zhou H, Yang Y, Dong K, et al., 2014. Influence of the gas particle flow characteristics of a low-NOx swirl burner on the formation of high temperature corrosion. Fuel, 134: 595–602. https://doi.org/10.1016/j.fuel.2014.06.027CrossRefGoogle Scholar
  60. Zhou H, Yang Y, Wang YY, 2015. Numerical investigation of gas-particle flow in the primary air pipe of low NOx swirl burner–the DEM-CFD method. Particuology, 19:133–140. https://doi.org/10.1016/j.partic.2014.04.017CrossRefGoogle Scholar
  61. Zhou H, Li Y, Tang Q, et al., 2017. Combining flame monitoring techniques and support vector machine for the online identification of coal blends. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(9):677–689. https://doi.org/10.1631/jzus.A1600454CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhouChina
  2. 2.Electric Power Research Institute of Guangdong Power Grid CorporationGuangzhouChina

Personalised recommendations