Skip to main content
Log in

Independent volume-in and volume-out control of an open circuit pump-controlled asymmetric cylinder system

开式泵控非对称缸负载容腔独立控制系统

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

To avoid the flow asymmetry of a closed circuit pump-controlled asymmetric cylinder system, an efficient open circuit pump-controlled asymmetric cylinder system (OPACS) with an independent displacement volume-in and volume-out (VIVO) control method is proposed. The energy transmission path of the OPACS was analyzed, and an energy calculation model was built. A position-pressure combined control method was adopted to validate the proposed OPACS. Based on a 0.6-MN open circuit pump-controlled forging press system, a series of experiments with different return cylinder pressures were conducted. The experimental results confirmed that the proposed OPACS with the position-pressure combined control method was able to recover energy to reduce the installment power without sensitivity to the return cylinder’s pressure variation and that the position accuracy and rapidity could be improved by increasing the pressure in the return cylinder.

中文概要

目的

为减少能量排放和提升节能效果,并解决非对称 缸系统的流量不对称问题,本文对开式泵控非对 称缸负载容腔独立控制系统的控制特性及能耗 特性进行了深入的研究,以期为其实际应用提供 理论支撑。

创新点

1. 提出开式泵控非对称缸负载容腔独立控制系 统,建立其能量传输模型;2. 以压机为对象进行 实验研究,采用位置压力负载容腔独立控制方 法,获得其能耗与控制特性。

方法

1. 介绍开式泵控非对称缸负载容腔独立控制系统 的构型;2. 通过理论推导,建立能量传输模型, 得到具有能量回收功能的系统;3. 通过实验研究 和分析,验证所提系统和方法的有效性。

结论

1. 基于能量传输模型得到的系统具有较好的节能 特性;2. 开式泵控非对称缸负载容腔独立控制系 统增加了系统控制自由度,验证了负载容腔独立 控制方法的有效性;3. 开式泵控非对称缸负载容 腔独立控制系统采用无杆腔位置控制和有杆腔 压力控制组合的控制方法;随着有杆腔压力的提 高,在不增加系统能耗的前提下该方法改善了系 统的位置控制精度。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Busquets E, Ivantysynova M, 2015a. A multi-actuator displacement-controlled system with pump switching: a study of the architecture and actuator-level control. Transactions of the Japanese Fluid Power System Society, 8(2):66–75.

    Google Scholar 

  • Busquets E, Ivantysynova M, 2015b. Adaptive robust motion control of an excavator hydraulic hybrid swing drive. SAE International Journal of Commercial Vehicles, 8(2):568–582. https://doi.org/10.4271/2015-01-2853

    Article  Google Scholar 

  • Chiang MH, 2011. A novel pitch control system for a wind turbine driven by a variable-speed pump-controlled hydraulic servo system. Mechatronics, 21(4):753–761. https://doi.org/10.1016/j.mechatronics.2011.01.003

    Article  Google Scholar 

  • Cho SH, Helduser S, 2008. Robust motion control of a clamp-cylinder for energy-saving injection moulding machines. Journal of Mechanical Science and Technology, 22(12):2445–2453. https://doi.org/10.1007/s12206-008-0907-6

    Article  Google Scholar 

  • Ge L, Dong Z, Huang W, et al., 2015. Research on the performance of hydraulic excavator with pump and valve combined separate meter in and meter out circuits. IEEE International Conference on Fluid Power and Mechatronics, p.37–41.

    Google Scholar 

  • Habibi S, Goldenberg A, 2000. Design of a new highperformance electro hydraulic actuator. IEEE/ASME Transactions on Mechatronics, 5(2):158–164. https://doi.org/10.1109/3516.847089

    Article  Google Scholar 

  • Hippalgaonkar R, Ivantysynova M, 2016a. Optimal power management for DChydraulic hybrid multi-actuator machines—Part 1: Theoretical studies, modeling and simulation. Journal of Dynamic Systems, Measurement, and Control, 138(5):051002. https://doi.org/10.1115/1.4032742

    Article  Google Scholar 

  • Hippalgaonkar R, Ivantysynova M, 2016b. Optimal power management for DChydraulic hybrid multi-actuator machines—Part 2: Machine implementation and measurement. Journal of Dynamic Systems, Measurement, and Control, 138(5):051003. https://doi.org/10.1115/1.4032743

    Article  Google Scholar 

  • Imamura T, Sawada Y, Ichikawa M, 2008. Energy-saving hybrid hydraulic system comprising highly efficient IPM motor and inverter, for injection molding and manufacturing machine. Proceedings of the JFPS International Symposium on Fluid Power, p. 117–120.

    Google Scholar 

  • Liu Y, S? ffker D, 2007. Robust approach for position control of hydraulic differential cylinder. Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, p.27–32.

    Google Scholar 

  • Peng Y, Wang J, Wei W, 2014. Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization. Journal of Zhejiang University-SCIENCE C (Computers & Electronics), 15(2):139–146. https://doi.org/10.1631/jzus.C1300182

    Article  Google Scholar 

  • Quan L, 2008. Current state, problems and the innovative solution of electro-hydraulic technology of pump controlled cylinder. Chinese Journal of Mechanical Engineering, 44(11):87–92 (in Chinese). https://doi.org/10.3901/JME.2008.11.087

    Article  Google Scholar 

  • Quan L, Lian ZS, 2005. Improving the efficiency of pump controlled differential cylinder system with inlet and outlet separately controlled principle. Chinese Journal of Mechanical Engineering, 41(3):123–127 (in Chinese). https://doi.org/10.3901/JME.2005.03.123

    Article  Google Scholar 

  • Rose J, Ivantysynova M, 2011. A study of pump control systems for smart pumps. Proceedings of the 52nd National Conference on Fluid Power, p.683–692.

    Google Scholar 

  • Sanada K, Miyazaki T, 2016. Application of DDVC fuel injection system to ship speed control. BATH/ASME Symposium on Fluid Power and Motion Control, No. FPMC2016-1760. https://doi.org/10.1115/FPMC2016-1760

    Google Scholar 

  • Sha N, Li J, 2004. Research on airborne power-by-wire integrated electrical actuation and control system. Journal of Beijing University of Aeronautics and Astronautics, 30(9): 909–912 (in Chinese).

    Google Scholar 

  • Su WH, Jiang JH, 2010. Direct drive volume control electrohydraulic servo ship rudder. Key Engineering Materials, 439-440:1388–1392. https://doi.org/10.4028/www.scientific.net/KEM.439-440.1388

    Article  Google Scholar 

  • Wang X, Tao JF, Zhang FR, 2016. Precision position control of pump-controlled asymmetric cylinder. Journal of Zhejiang University (Engineering Science), 50(4):597–602 (in Chinese). https://doi.org/10.3785/j.issn.1008-973X.2016.04.001

    Google Scholar 

  • Zhao H, Zhang HJ, Quan L, 2013. Characteristics of asymmetrical pump controlled differential cylinder speed servo system. Journal of Mechanical Engineering, 49(22): 170–176 (in Chinese). https://doi.org/10.3901/JME.2013.22.170

    Article  Google Scholar 

  • Zheng JM, Zhao SD, Wei SG, 2010. Fuzzy iterative learning control of electro-hydraulic servo system for SRM directdrive volume control hydraulic press. Journal of Central South University of Technology, 17(2):316–322. https://doi.org/10.1007/s11771-010-0048-9

    Article  Google Scholar 

  • Zimmerman J, Ivantysynova M, 2010. Reduction of engine and cooling power by displacement control. Proceedings of the 6th FPNI PhD Symposium, p.339–352.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yao.

Additional information

Project supported by the National Natural Science Foundation of China (No. 51575471) and the Key Project of Natural Science Foundation of Hebei Province (No. E2016203264), China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Wang, P., Cao, Xm. et al. Independent volume-in and volume-out control of an open circuit pump-controlled asymmetric cylinder system. J. Zhejiang Univ. Sci. A 19, 203–210 (2018). https://doi.org/10.1631/jzus.A1600780

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1600780

Key words

CLC number

关键词

Navigation