Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 19, Issue 2, pp 137–147 | Cite as

Design of transition curve of profiled chamber flow sensor considering slides with arc ends

  • Li Liu
  • Yang Lu
Article
  • 24 Downloads

Abstract

The face-shaped curve of the stator inner chamber of the profiled chamber flow sensor is formed with two quarters of circular arcs and two quarters of noncircular arcs. The two quarters of noncircular arcs are normally defined as transition curves. The parameters of the transition curves directly affect the dynamic performance of the sensor system. Therefore, the design and optimization of the transition curves is a most important part in the design of the system. Based on our previous work, this paper discusses more general expressions of the boundary conditions and derivations of the transition curves. The optimization of the transition curves considering slides with arc ends as the most concentrated part is presented in detail. Firstly, the concept of “basic transition curve” is proposed. Secondly, the boundary conditions and derivations of the basic transition curves are discussed and general expressions using a polynomial function are given. Then, the concave-convex direction of the basic transition curve is analyzed. Lastly, the transition curves considering the slides with arc ends are analyzed when the arc ends have equivalent radius with the major radius of the stator.

Key words

Profiled chamber flow sensor Transition curve Optimal design Curve curvature 

考虑转子为圆弧顶的流量传感器异型腔过渡曲线的优化设计

概要

目的

为了使作者设计的一种新型异型腔流量传感器获得更好的密封性能和转子动态特性,本文重点研究转子为圆弧顶时的流量传感器定子型腔过渡曲线的优化设计。

创新点

将转子顶端设计为圆弧形状,优化了转子与定子内腔之间的密封性能,但增加了曲线设计的难度。本文给出了设计方法和相关的公式推导,并提出过渡曲线的设计需要考虑曲线凸凹形状这个因素。

方法

1. 提出“基本过渡曲线”的概念并总结多项式函数描述的过渡曲线的优化设计方法,给出边界条件和求解方法;2. 分析过渡曲线的凸凹形状对设计加工的影响;3. 分析圆弧顶转子与定子内腔可能产生的干涉问题,给出考虑转子顶端为圆弧形状时的过渡曲线的设计方法,并分析不同阶数的多项式函数所描述的过渡曲线的凸凹形状特点。

结论

1. 本文设计的过渡曲线可以使流量传感器的转子与定子内腔获得更好的密封性能,且转子的动态特性达到最优;2. 考虑过渡曲线的凸凹形状可降低加工工艺的难度。

关键词

转子流量传感器 过渡曲线 转子动态特性 

CLC number

TH113 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharyya S, Naskar TK, 2008. Fractional polynomial mod traps for optimization of jerk and Hertzian contact stress in cam surface. Computers & Structures, 86(3–5):322–329. https://doi.org/10.1016/j.compstruc.2007.01.045CrossRefGoogle Scholar
  2. Cai HH, Wang GJ, 2009. A new method in highway route design: joining circular arcs by a single C Bezier curve with shape parameter. Journal of Zhejiang University-SCIENCE A, 10(4):562–569. https://doi.org/10.1631/jzus.A0820267CrossRefMATHGoogle Scholar
  3. Cardona A, Lens E, Nigro N, 2002. Optimal design of cams. Multibody System Dynamics, 7(3):285–305. https://doi.org/10.1023/A:1015278213069CrossRefMATHGoogle Scholar
  4. Carra S, Garziera R, Pellegrini M, 2004. Synthesis of cams with negative radius follower and evaluation of the pressure angle. Mechanism and Machine Theory, 39(10): 1017–1032. https://doi.org/10.1016/j.mechmachtheory.2004.05.001CrossRefMATHGoogle Scholar
  5. Chablat D, Angeles J, 2007. Strategies for the design of a Slide-o-Cam transmission. Proceedings of CK2005, International Workshop on Computational Kinematics, p.1–10.Google Scholar
  6. Flocker FW, 2012. A versatile cam profile for controlling interface force in multiple-dwell cam-follower systems. Journal of Mechanical Design, 134(9):094501. https://doi.org/10.1115/1.4007146CrossRefGoogle Scholar
  7. Fujiki M, Ni J, Shih AJ, 2011. Tool path planning for near-dry EDM milling with lead angle on curved surfaces. Journal of Manufacturing Science and Engineering, 133(5): 051005. https://doi.org/10.1115/1.4004865CrossRefGoogle Scholar
  8. Hidalgo-Martínez M, Sanmiguel-Rojas E, Burgos MA, 2014. Design of cams with negative radius follower using Bezier curves. Mechanism and Machine Theory, 82: 87–96. https://doi.org/10.1016/j.mechmachtheory.2014.08.001CrossRefGoogle Scholar
  9. Lei H, Lu Y, 2011. Optimization of transition curve of casing cavity of profiled chamber flow sensor. Mechanism and Machine Theory, 46(11):1773–1783. https://doi.org/10.1016/j.mechmachtheory.2011.06.004CrossRefGoogle Scholar
  10. Lei H, Jiang GL, Jiang ZY, et al., 2010. Profiled chamber flow sensor. Journal of Zhejiang University (Engineering Science), 44:1535–1539 (in Chinese).Google Scholar
  11. Lei H, Hu H, Lu Y, 2016. A dynamic analysis on the transition curve of profiled chamber metering pump. Journal of Dynamic Systems, Measurement, and Control, 138(7): 071003. https://doi.org/10.1115/1.4033174CrossRefGoogle Scholar
  12. Lu Y, 2007. Profiled Chamber Flow-meter. Patent of China CN101149284 (in Chinese).Google Scholar
  13. Mandal M, Naskar TK, 2009. Introduction of control points in splines for synthesis of optimized cam motion program. Mechanism and Machine Theory, 44(1):255–271. https://doi.org/10.1016/j.mechmachtheory.2008.01.005CrossRefMATHGoogle Scholar
  14. Mermelstein SP, Acar M, 2004. Optimising cam motion using piecewise polynomials. Engineering with Computers, 19(4):241–254. https://doi.org/10.1007/s00366-003-0264-0CrossRefGoogle Scholar
  15. Naskar TK, Mishra R, 2012. Introduction of control points in B-splines for synthesis of ping finite optimized cam motion program. Journal of Mechanical Science and Technology, 26(2):489–494. https://doi.org/10.1007/s12206-011-1004-9CrossRefGoogle Scholar
  16. Nguyen V, Kim D, 2007. Flexible cam profile synthesis method using smoothing spline curves. Mechanism and Machine Theory, 42(7):825–838. https://doi.org/10.1016/j.mechmachtheory.2006.07.005CrossRefMATHGoogle Scholar
  17. Wu L, Wu S, Yan H, 1999. Simplified graphical determination of disk-cam curvature. Mechanism and Machine Theory, 34(7):1023–1036. https://doi.org/10.1016/S0094-114X(98)00088-3CrossRefMATHGoogle Scholar
  18. Wu L, Chang W, Liu C, 2007. The design of varying-velocity translating cam mechanisms. Mechanism and Machine Theory, 42(3):352–364. https://doi.org/10.1016/j.mechmachtheory.2006.03.006CrossRefMATHGoogle Scholar
  19. Wu LM, Liu DR, Lu Y, 2009. Bilateral Profiled Chamber Flow-meter. Patent of China CN101586973 (in Chinese).Google Scholar
  20. Yan HS, Cheng WT, 1999. Curvature analysis of rollerfollower cam mechanisms. Mathematical and Computer Modelling, 29(1):69–87. https://doi.org/10.1016/S0895-7177(98)00179-4MathSciNetCrossRefMATHGoogle Scholar
  21. Yu Q, Lee HP, 1998. Influence of cam motions on the dynamic behavior of return springs. Journal of Mechanical Design, 120(2):305–310. https://doi.org/10.1115/1.2826973CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Aeronautics and AstronauticsZhejiang UniversityHangzhouChina

Personalised recommendations