Skip to main content

A model of two cylindrical plane wall layers exposed to oscillating temperatures with different amplitudes and frequencies



A linear model of two cylindrical plane wall layers exposed to oscillating temperatures and frequencies was built using a physical superposition of two states. In the first state, the inner surface of a wall was exposed to oscillating temperature and the outer surface was exposed to a zero relative temperature. In the second state, the inner surface was exposed to a zero relative temperature while the outer surface was exposed to an oscillating temperature with different amplitude and frequency. Temperature distributions were derived for different amplitudes, frequencies, and thermal conductivities. Results show that increasing the frequency decreased the depth of temperature penetration. A high frequency led to extremum temperature values on the surface, while a low frequency allowed gradual temperature changes during the time period. Temperature distribution lines showing simultaneous heat flux entry and exit were not observed.



扩大对外表面温度波动约束下的圆柱壳内部温度 分布的认识;建立模型并研究同时施加在内外表 面的不同振幅和频率的温度波动约束对壳体内 温度分布的影响。


1. 提出一个清晰的线性模型以获得在外表面施加 不同频率和振幅的温度约束时壳体的温度分布; 2. 此模型适用于解决导热能力介于理想导热和 绝热之间的不同材料组成的任意层数圆柱壳体 内的温度分布问题。


1. 由热扩散方程和内外表面的边界条件来构建物 理模型;2.使用复数和物理叠加以提高该模型的 表现。


1. 增加表面温度约束的波动频率会相应地减少温 度渗透深度;因此,对于高频率工作并需要绝热 的系统,可以节约材料厚度并绝热。2. 并未发现 同时反映热流的进和出的温度分布线。3. 要构建 这个物理模型,必须使用物理叠加。

This is a preview of subscription content, access via your institution.


  1. Akbarzadeh, A.H., Chen, Z.T., 2012. Transient heat conduction in a functionally graded cylindrical panel based on the dual phase lag theory. International Journal of Thermophysics, 33:1100–1125.

    Article  Google Scholar 

  2. Barletta, A., Zanchini, E., 1995. The temperature field in a cylindrical electric conductor with annular section. International Journal of Heat and Mass Transfer, 38(15): 2821–2832.

    Article  Google Scholar 

  3. Barletta, A., Zanchini, E., 1996. Hyperbolic heat conduction and thermal resonances in a cylindrical solid carrying a steady-periodic electric field. International Journal of Heat and Mass Transfer, 39(6):1307–1315.

    Article  Google Scholar 

  4. Bas, H., Keles, I., 2015. Novel approach to transient thermal stress in an annular fin. Journal of Thermophysics and Heat Transfer, 29(4):705–710.

    Article  Google Scholar 

  5. Chatterjee, D., Mondal, B., Halder, P., 2013. Unsteady forced convection heat transfer over a semicircular cylinder at low Reynolds numbers. Numerical Heat Transfer, Part A: Applications, 63:411–429.

    Article  Google Scholar 

  6. Chiu, C., Chen, C., 2002. Thermal stresses in annular fins with temperature-dependent conductivity under periodic boundary condition. Journal of Thermal Stresses, 25(5): 475–492.

    Article  Google Scholar 

  7. Daneshjou, K., Bakhtiari, M., Alibakhshi, R., et al., 2015. Transient thermal analysis in 2D orthotropic FG hollow cylinder with heat source. International Journal of Heat and Mass Transfer, 89:977–984.

    Article  Google Scholar 

  8. Fazeli, H., Abdus, M.A., Karabi, H., et al., 2013. Analysis of transient heat conduction in a hollow cylinder using Duhamed theorem. International Journal of Thermophysics, 34(2):350–365.

    Article  Google Scholar 

  9. Jang, J., Chiu, T., 2007. Numerical and experimental thermal analysis for a metallic hollow cylinder subjected to step-wise electro-magnetic induction heating. Applied Thermal Engineering, 27(11–12):1883–1894.

    Article  Google Scholar 

  10. Keles, I., Conker, C., 2011. Transient hyperbolic heat conduction in thick-walled FGM cylinders and spheres with exponentially-varying properties. European Journal of Mechanics A/Solids, 30(3):449–455.

    Article  MATH  Google Scholar 

  11. Lu, X., Tervola, P., Viljanen, M., 2006. Transient analytical solution to heat conduction in composite circular cylinder. International Journal of Heat and Mass Transfer, 49(1–2):341–348.

    Article  MATH  Google Scholar 

  12. Malekzadeh, P., Haghighi, M.R., Golbahar, H.Y., 2012. Heat transfer analysis of functionally graded hollow cylinders subjected to an axisymetric moving boundary heat flux. Numerical Heat Transfer, Part A, 61(8):614–632.

    Article  Google Scholar 

  13. Rakopoulos, C.D., Rakopoulos, D.C., Mavropoulos, G.C., et al., 2004a. Experimental and theoretical study of the short term response temperature transients in the cylinder walls of a diesel engine at various operating conditions. Applied Thermal Engineering, 24(5–6):679–702.

    Article  Google Scholar 

  14. Rakopoulos, C.D., Antonopoulos, K.A., Rakopoulos, D.C., et al., 2004b. Investigation of the temperature oscillations in the cylinder walls of a diesel engine with special reference to the limited cooled case. International Journal of Energy Research, 28:977–1002.

    Article  Google Scholar 

  15. Razelos, P., Lazaridis, A., 1967. A lumped heat-transfer coefficient for periodically heated hollow cylinders. International Journal of Heat and Mass Transfer, 10(10):1373–1387.

    Article  Google Scholar 

  16. Roslan, R., Saleh, H., Hashim, H., et al., 2014. Natural convection in an enclosure containing a sinusoidally heated cylindrical source. International Journal of Heat and Mass Transfer, 70:119–127.

    Article  Google Scholar 

  17. Sun, Y., Zhang, X., 2015. Transient heat transfer of a hollow cylinder subjected to periodic boundary conditions. Journal of Pressure Vessel Technology, 137:1–10.

    Article  Google Scholar 

  18. Takabi, B., 2016. Thermomechanical transient analysis of a thick-hollow FGM cylinder. Engineering Solid Mechanics, 4:25–32.

    Article  Google Scholar 

  19. Talaee, M.R., Atefi, G., 2011. Non-Fourier heat conduction in a finite hollow cylinder with periodic surface heat flux. Archive of Applied Mechanics, 81(12):1793–1806.

    Article  MATH  Google Scholar 

  20. Talaee, M.R., Alizadeh, M., Bakhshandeh, S., 2014. An exact analytical solution of non-Fourier thermal stress in cylindrical shell under periodic boundary condition. Engineering Solid Mechanics, 2(4):293–302.

    Article  Google Scholar 

  21. Yan, Y., Malen, J.A., 2013. Periodic heating amplifies the efficiency of thermoelectric energy conversion. Energy & Environmental Science, 6(4):1267–1273.

    Article  Google Scholar 

  22. Zhang, J., Li, G., Li, S., 2015. Analysis of transient displacements for a ceramic-metal functionally graded cylindrical shell under dynamic thermal loading. Ceramics International, 41(9):12378–12385.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Shalom Sadik.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sadik, S. A model of two cylindrical plane wall layers exposed to oscillating temperatures with different amplitudes and frequencies. J. Zhejiang Univ. Sci. A 18, 974–983 (2017).

Download citation


  • Oscillating temperature
  • Temperature amplitude
  • Thermal conductivity
  • Thermal diffusivity


  • 振荡温度
  • 温度振幅
  • 热导率
  • 热扩散率