Skip to main content
Log in

Combining flame monitoring techniques and support vector machine for the online identification of coal blends

结合火焰监测技术和支持向量机算法的混煤在线辨识研究

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The combustion behavior of two single coals and three coal blends in a 300 kW coal-fired furnace under variable operating conditions was monitored by a flame monitoring system based on image processing and spectral analysis. A similarity coefficient was defined to analyze the similarity of combustion behavior between two different coal types. A total of 20 flame features, extracted by the flame monitoring system, were ranked by weights of their importance estimated using ReliefF, a feature selection algorithm. The mean of the infrared signal was found to have by far the highest importance weight among the flame features. Support vector machine (SVM) was used to identify the coal types. The number of flame features used to build the SVM model was reduced from 20 to 12 by combining the methods of ReliefF and SVM, and computational precision was guaranteed simultaneously. A threshold was found for the relationship between the error rate and similarity coefficient, which were positively correlated. The success rate decreased with increasing similarity coefficient. The results obtained demonstrate that the system can achieve the online identification of coal blends in industry.

中文概要

目的

混煤在锅炉燃烧中应用广泛。本文利用火焰监测技术提取混煤燃烧的火焰特征量,获取最优的特征量组合,并研究混煤相似度对其辨识错误率和正确率的影响。

创新点

1. 利用ReliefF 算法和支持向量机(SVM)算法定量分析各个火焰特征量在煤质辨识过程中的重要性,获取最优特征量组合;2. 定义混煤的相似度,并分析相似性对其辨识错误率和正确率的影响。

方法

1. 利用火焰监测技术提取火焰图像信号和火焰光强信号,提取20 个火焰特征量(图3 和4、表1);2. 利用ReliefF 算法计算20 个特征量在煤质辨识中的重要性(图7);3. 利用SVM 算法分析特征量个数对煤质辨识正确率的影响,确定最优特征量组合(图8)。

结论

1. 在煤质辨识过程中,结合ReliefF 算法和SVM算法可以将特征量个数由20 降至12,并能保证辨识准确度;2. 混煤与其组分煤种的相似度主要受组分煤种的挥发份含量及掺混比例影响;3. 辨识错误率与相似度之间存在一个阈值,当相似度低于该阈值时,辨识错误率为0,当相似度高于该阈值时辨识错误率与相似度呈正相关;4. 辨识正确率随着相似度的升高而降低。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballester, J., García-Armingol, T., 2010. Diagnostic techniques for the monitoring and control of practical flames. Progress in Energy and Combustion Science, 36(4): 375–411. http://dx.doi.org/10.1016/j.pecs.2009.11.005

    Article  Google Scholar 

  • Biswas, S., Choudhury, N., Sarkar, P., et al., 2006. Studies on the combustion behaviour of blends of Indian coals by TGA and drop tube furnace. Fuel Processing Technology, 87(3): 191–199. http://dx.doi.org/10.1016/j.fuproc.2005.05.002

    Article  Google Scholar 

  • Chang, C.C., Lin, C.J., 2011. LibSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3): 27. http://dx.doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  • Chi, T., Zhang, H., Yan, Y., et al., 2010. Investigations into the ignition behaviors of pulverized coals and coal blends in a drop tube furnace using flame monitoring techniques. Fuel, 89(3): 743–751. http://dx.doi.org/10.1016/j.fuel.2009.06.010

    Article  Google Scholar 

  • Cloke, M., Lester, E., Thompson, A.W., 2002. Combustion characteristics of coals using a drop-tube furnace. Fuel, 81(6): 727–735. http://dx.doi.org/10.1016/S0016-2361(01)00199-5

    Article  Google Scholar 

  • Cortes, C., Vapnik, V., 1995. Support-vector networks. Machine Learning, 20(3): 273–297. http://dx.doi.org/10.1023/A:1022627411411

    MATH  Google Scholar 

  • Haas, J., Tamura, M., Weber, R., 2001. Characterisation of coal blends for pulverised fuel combustion. Fuel, 80(9): 1317–1323. http://dx.doi.org/10.1016/S0016-2361(00)00216-7

    Article  Google Scholar 

  • Hsu, C.W., Lin, C.J., 2002. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13(2): 415–425. http://dx.doi.org/10.1109/72.991427

    Article  Google Scholar 

  • Huang, B.Y., Luo, Z.X., Zhou, H.C., 2010. Optimization of combustion based on introducing radiant energy signal in pulverized coal-fired boiler. Fuel Processing Technology, 91(6): 660–668. http://dx.doi.org/10.1016/j.fuproc.2010.01.015

    Article  Google Scholar 

  • Huang, H.W., Zhang, Y., 2008. Flame colour characterization in the visible and infrared spectrum using a digital camera and image processing. Measurement Science and Technology, 19(8): 085406. http://dx.doi.org/10.1088/0957-0233/19/8/085406

    Article  Google Scholar 

  • Huang, Y., Yan, Y., 2000. Transient two-dimensional temperature measurement of open flames by dual-spectral image analysis. Transactions of the Institute of Measurement and Control, 22(5): 371–384. http://dx.doi.org/10.1177/014233120002200503

    Article  Google Scholar 

  • Huang, Y., Yan, Y., Riley, G., 2000. Vision-based measurement of temperature distribution in a 500-kW model furnace using the two-colour method. Measurement, 28(3): 175–183. http://dx.doi.org/10.1016/S0263-2241(00)00010-5

    Article  Google Scholar 

  • Jiang, Z.W., Luo, Z.X., Zhou, H.C., 2009. A simple measurement method of temperature and emissivity of coalfired flames from visible radiation image and its application in a CFB boiler furnace. Fuel, 88(6): 980–987. http://dx.doi.org/10.1016/j.fuel.2008.12.014

    Article  Google Scholar 

  • Kira, K., Rendell, L.A., 1992. A practical approach to feature selection. Proceedings of the 9th International Workshop on Machine Learning, p.249–256. http://dx.doi.org/10.1016/B978-1-55860-247-2.50037-1

    Google Scholar 

  • Kononenko, I., Simec, E., Robniksikonja, M., 1997. Overcoming the myopia of inductive learning algorithms with ReliefF. Applied Intelligence, 7(1): 39–55. http://dx.doi.org/10.1023/A:1008280620621

    Article  Google Scholar 

  • Leslie, C., Eskin, E., Noble, W.S., 2002. The spectrum kernel: a string kernel for SVM protein classification. Pacific Symposium on Biocomputing, p.564–575. http://dx.doi.org/10.1142/9789812799623_0053

    Google Scholar 

  • Li, X.L., Wu, M.J., Lu, G., et al., 2015. On-line identification of biomass fuels based on flame radical imaging and application of radical basis function neural network techniques. IET Renewable Power Generation, 9(4): 323–330. http://dx.doi.org/10.1049/iet-rpg.2013.0392

    Article  Google Scholar 

  • Lu, G., Yan, Y., Colechin, M., et al., 2006. Monitoring of oscillatory characteristics of pulverized coal flames through image processing and spectral analysis. IEEE Transactions on Instrumentation and Measurement, 55(1): 226–231. http://dx.doi.org/10.1109/TIM.2005.861254

    Article  Google Scholar 

  • Molcan, P., Lu, G., Bris, T.L., et al., 2009. Characterisation of biomass and coal co-firing on a 3 MWth combustion test facility using flame imaging and gas/ash sampling techniques. Fuel, 88(12): 2328–2334. http://dx.doi.org/10.1016/j.fuel.2009.06.027

    Article  Google Scholar 

  • Moon, C., Sung, Y., Ahn, S., et al., 2013. Thermochemical and combustion behaviors of coals of different ranks and their blends for pulverized-coal combustion. Applied Thermal Engineering, 54(1): 111–119. http://dx.doi.org/10.1016/j.applthermaleng.2013.01.009

    Article  Google Scholar 

  • Osorio, E., Ghiggi, M.L.F., Vilela, A.C.F., et al., 2008. Non-isothermal combustion behaviour of coal blends in a thermobalance as seen by optical microscopy. Thermochimica Acta, 475(1–2): 1–7. http://dx.doi.org/10.1016/j.tca.2008.06.002

    Article  Google Scholar 

  • Peralta, D., Paterson, N.P., Dugwell, D.R., et al., 2001. Coal blend performance during pulverised-fuel combustion: estimation of relative reactivities by a bomb-calorimeter test. Fuel, 80(11): 1623–1634. http://dx.doi.org/10.1016/S0016-2361(01)00031-X

    Article  Google Scholar 

  • Piramuthu, S., 2003. On learning to predict web traffic. Decision Support Systems, 35(2): 213–229. http://dx.doi.org/10.1016/S0167-9236(02)00107-0

    Article  Google Scholar 

  • Qiu, T., Yan, Y., Lu, G., 2012. An autoadaptive edge-detection algorithm for flame and fire image processing. IEEE Transactions on Instrumentation and Measurement, 61(5): 1486–1493. http://dx.doi.org/10.1109/TIM.2011.2175833

    Article  Google Scholar 

  • Sarkar, P., Mukherjee, A., Sahu, S.G., et al., 2013. Evaluation of combustion characteristics in thermogravimetric analyzer and drop tube furnace for Indian coal blends. Applied Thermal Engineering, 60(1–2): 145–151. http://dx.doi.org/10.1016/j.applthermaleng.2013.06.054

    Article  Google Scholar 

  • Sun, D., Lu, G., Zhou, H., et al., 2011. Flame stability monitoring and characterization through digital imaging and spectral analysis. Measurement Science and Technology, 22(11): 114007. http://dx.doi.org/10.1088/0957-0233/22/11/114007

    Article  Google Scholar 

  • Tan, C., Xu, L.J., Li, X.M., et al., 2012. Independent component analysis-based fuel type identification for coal-fired power plants. Combustion Science and Technology, 184(3): 277–292. http://dx.doi.org/10.1080/00102202.2011.635613

    Article  Google Scholar 

  • Wang, F., Wang, X., Ma, Z., et al., 2002. The research on the estimation for the NOx emissive concentration of the pulverized coal boiler by the flame image processing technique. Fuel, 81(16): 2113–2120. http://dx.doi.org/10.1016/s0016-2361(02)00145-x

    Google Scholar 

  • Xu, L.J., Yan, Y., Cornwell, S., et al., 2005. Online fuel tracking by combining principal component analysis and neural network techniques. IEEE Transactions on Instrumentation and Measurement, 54(4): 1640–1645. http://dx.doi.org/10.1109/TIM.2005.851203

    Article  Google Scholar 

  • Zhou, H., Tang, Q., Yang, L.B., et al., 2014. Support vector machine based online coal identification through advanced flame monitoring. Fuel, 117: 944–951. http://dx.doi.org/10.1016/j.fuel.2013.10.041

    Article  Google Scholar 

  • Zhou, H., Li, L.T., Zhang, H.L., et al., 2015. Research on the slagging characteristics of blended coals in a pilot-scale furnace. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(3): 204–216. http://dx.doi.org/10.1631/jzus.A1400172

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhou.

Additional information

Project supported by the National Basic Research Program (973 Program) of China (No. 2015CB251501)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Li, Y., Tang, Q. et al. Combining flame monitoring techniques and support vector machine for the online identification of coal blends. J. Zhejiang Univ. Sci. A 18, 677–689 (2017). https://doi.org/10.1631/jzus.A1600454

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1600454

Key words

关键词

CLC number

Navigation