Journal of Zhejiang University-SCIENCE A

, Volume 18, Issue 6, pp 413–429 | Cite as

A study of multi-pass scheduling methods for die-less spinning

  • Hai Guo
  • Jin Wang
  • Guo-dong Lu
  • Zi-han Sang
  • Qi-hang Wang
Article
  • 55 Downloads

Abstract

The multi-pass scheduling method is a key issue in die-less spinning for determining the quality of the final products, including their shape deviations and wall thicknesses, and has drawn increasing interest in recent studies devoted to trying to improve the accuracy of the formed parts. In this paper, two main parameters, roller path profiles and deformation allocations in each pass, are considered in newly proposed multi-pass scheduling and optimizing methods in die-less spinning. Four processing methods with different roller path profiles and with three deformation allocation methods are proposed for investigating the influence of scheduling parameters on product qualities. The ‘similar geometry principle for restraining shape deviation’ and the ‘small curvature principle for maintaining wall thickness’ are presented for optimal design of roller path profiles; in addition, the ‘uniform allocation principle for maintaining wall thickness’ and the ‘large deformation principle for restraining shape deviation’ are brought forward as suggestions for deformation allocations. Based on these principles, a scheduling method denoted by RF+(FP & EHS) is presented to improve the comprehensive quality of a product of die-less spinning.

Key words

Die-less spinning Pass schedules Shape deviations Roller path profiles Deformation allocations 

无芯模旋压道次规划方法研究

摘要

目 的

通过优化无芯模旋压轨迹提高成形件形状精度,同时保持壁厚以防止过度减薄。

创新点

针对轨迹形状设计,提出利于形状误差抑制的“几何相似性原则”和利于壁厚保持的“小曲率原则”。针对道次间距设计,提出利于形状误差抑制的终道次“大变形量原则”和利于壁厚保持的“变形量均匀分配原则”。

方法

首先,根据不同的前道次轨迹形状与目标件复杂轮廓形状的结合衍生出四种成形方式(表1)。通过试验比较不同成形方式对成形件形状精度和壁厚的影响。而后比较等道次倾角差(EPA)、等外径差(EDD)和等平均环向应变(EHS)成形量分配方法对成形质量的影响(图13~16)。最后,根据终道次对成形质量的关键性影响,提出基于终道次优先的等平均径向应变道次轨迹规划方法。

结论

基于终道次优先的等平均径向应变道次轨迹(RF+(FP & EHS))规划方法,能够在有效抑制形状偏差和提高形状精度的同时较好地保持壁厚以防止过度减薄,是一种较优的道次轨迹规划方法。

关键词

无芯模旋压 道次规划 形状偏差 旋轮轨迹 变形量分配 

CLC number

TG306 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. El-Khabeery, M.M., Fattouh, M., El-Sheikh, M.N., et al., 1991. On the conventional simple spinning of cylindrical aluminum cups. International Journal of Machine Tools and Manufacture, 31(2):203–219. http://dx.doi.org/10.1016/0890-6955(91)90005-NCrossRefGoogle Scholar
  2. Hayama, M., Kudo, H., Shinokura, T., 1970. Study of the pass schedule in conventional simple spinning. Bulletin of JSME, 13(65):1358–1365. http://dx.doi.org/10.1299/jsme1958.13.1358CrossRefGoogle Scholar
  3. Jia, Z., Han, Z.R., Xu, Q., et al., 2015. Effects of processing parameters on the surface quality of square section die-less spinning. The International Journal of Advanced Manufacturing Technology, 80(9):1689–1700. http://dx.doi.org/10.1007/s00170-015-7055-9CrossRefGoogle Scholar
  4. Kang, D.C., Gao, X.C., Meng, X.F., et al., 1999. Study on the deformation mode of conventional spinning of plates. Journal of Materials Processing Technology, 91(1–3): 226–230. http://dx.doi.org/10.1016/S0924-0136(98)00447-6CrossRefGoogle Scholar
  5. Kawai, K., Yang, L.N., Kudo, H., 2001. A flexible shear spinning of truncated conical shells with a generalpurpose mandrel. Journal of Materials Processing Technology, 113(1–3):28–33. http://dx.doi.org/10.1016/s0924-0136(01)00630-6CrossRefGoogle Scholar
  6. Kawai, K., Yang, L.N., Kudo, H., 2007. A flexible shear spinning of axi-symmetrical shells with a generalpurpose mandrel. Journal of Materials Processing Technology, 192–193: 13–17. http://dx.doi.org/10.1016/j.jmatprotec.2007.04.008CrossRefGoogle Scholar
  7. Kopp, R., Wiegels, H., 1998. Einführung in Die Umformtechnik. Kang, Y., Hong, Z., translators, 2010. Higher Education Press, Beijing, China (in Chinese).Google Scholar
  8. Li, Y., Wang, J., Lu, G.D., et al., 2014. A numerical study of the effects of roller paths on dimensional precision in die-less spinning of sheet metal. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(6):432–446. http://dx.doi.org/10.1631/jzus.A1300405CrossRefGoogle Scholar
  9. Lin, X.J., Ge, T., Wang, J., et al., 2015. Numerical investigation of effects of deformation allocation on multi-pass conventional spinning process of curvilinear generatrix parts. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(18):3299–3307. http://dx.doi.org/10.1177/0954406215570384Google Scholar
  10. Liu, C.H., 2007. The simulation of the multi-pass and die-less spinning process. Journal of Materials Processing Technology, 192–193: 518–524. http://dx.doi.org/10.1016/j.jmatprotec.2007.04.021CrossRefGoogle Scholar
  11. Liu, J.H., Yang, H., Li, Y.Q., 2002. A study of the stress and strain distributions of first-pass conventional spinning under different roller-traces. Journal of Materials Processing Technology, 129(1–3):326–329. http://dx.doi.org/10.1016/S0924-0136(02)00682-9CrossRefGoogle Scholar
  12. Music, O., Allwood, J.M., Kawai, K., 2010. A review of the mechanics of metal spinning. Journal of Materials Processing Technology, 210(1):3–23. http://dx.doi.org/10.1016/j.jmatprotec.2009.08.021CrossRefGoogle Scholar
  13. Polyblank, J.A., Allwood, J.M., 2015. Parametric toolpath design in metal spinning. CIRP Annals―Manufacturing Technology, 64(1):301–304. http://dx.doi.org/10.1016/j.cirp.2015.04.077CrossRefGoogle Scholar
  14. Quigley, E., Monaghan, J., 2000. Metal forming: an analysis of spinning processes. Journal of Materials Processing Technology, 103(1):114–119. http://dx.doi.org/10.1016/S0924-0136(00)00394-0CrossRefGoogle Scholar
  15. Sugita, Y., Arai, H., 2015. Formability in synchronous multipass spinning using simple pass set. Journal of Materials Processing Technology, 217: 336–344. http://dx.doi.org/10.1016/j.jmatprotec.2014.11.017CrossRefGoogle Scholar
  16. Wang, L., Long, H., 2011. A study of effects of roller path profiles on tool forces and part wall thickness variation in conventional metal spinning. Journal of Materials Processing Technology, 211(12):2140–2151. http://dx.doi.org/10.1016/j.jmatprotec.2011.07.013CrossRefGoogle Scholar
  17. Wang, L., Long, H., 2013. Roller path design by tool compensation in multi-pass conventional spinning. Materials & Design, 46: 645–653. http://dx.doi.org/10.1016/j.matdes.2012.10.048CrossRefGoogle Scholar
  18. Wong, C.C., Dean, T.A., Lin, J., 2003. A review of spinning, shear forming and flow forming processes. International Journal of Machine Tools and Manufacture, 43(14): 1419–1435. http://dx.doi.org/10.1016/S0890-6955(03)00172-XCrossRefGoogle Scholar
  19. Xia, Q., Xiao, G., Long, H., et al., 2014. A review of process advancement of novel metal spinning. International Journal of Machine Tools and Manufacture, 85: 100–121. http://dx.doi.org/10.1016/j.ijmachtools.2014.05.005CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Hai Guo
    • 1
  • Jin Wang
    • 1
  • Guo-dong Lu
    • 1
  • Zi-han Sang
    • 1
  • Qi-hang Wang
    • 1
  1. 1.State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang UniversityHangzhouChina

Personalised recommendations