Skip to main content
Log in

Fabrication of composite nanofiltration membranes by dopamine-assisted poly(ethylene imine) deposition and cross-linking

多巴胺辅助聚乙烯亚胺沉积交联的复合纳滤膜制备

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Positively charged composite nanofiltration (NF) membranes with good stability were prepared by dopamine (DA) assisted poly(ethylene imine) (PEI) deposition on a polysulfone ultrafiltration (UF) substrate followed by a cross-linking step. Attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electronic microscopy, and atom force microscopy were employed to characterize the surface chemistry and morphology of the obtained composite membranes. The DA and PEI co-deposition conditions were optimized based on knowledge of the co-deposition mechanism. The effects of the cross-linker concentration, cross-linking time, and reaction temperature on the permeation and separation properties of the prepared composite membranes were investigated in detail. Under optimized conditions, the MgCl2 rejection and permeation flux of the composite membrane reached 80.4% and 19.6 L/(m2·h), respectively (the feed was 0.01 mol/L of MgCl2 solution under a test pressure of 0.4 MPa). The rejection of various salts followed the order MgCl2≈CaCl2>MgSO4>NaCl>Na2SO4, suggesting the membranes were positively charged. The composite membranes showed good durability under alkaline aqueous conditions. This study provided new insights into the fabrication of mussel-inspired thin-film composite nanofiltration membranes.

摘要

目的

利用多巴胺改性构建一种简单制备荷正电复合纳 滤膜,解决多巴胺类改性材料耐碱性差的问题。

创新点

1. 利用共沉积技术与交联反应成功制备了荷正电 复合纳滤膜;相较于传统多巴胺改性膜,该复合 膜的稳定性大大提高。2. 经过测试表征,制备得 到的纳滤膜的分离尺寸属于疏松纳滤膜范围,可 用于相应尺度的分离领域。

方法

1. 通过多巴胺与聚乙烯亚胺共沉积,首先实现二 者的表面沉积,随后通过交联剂交联制备复合膜 (图1);2. 对改性膜前后表面理化性质进行相应 表征(表2 和图3~6);3. 通过测试通量和截留等 性能及分析相关纳滤模型,表征该复合膜分离性 能(图7 和8,公式(5)和(7));4. 通过长期 分离测试及碱性溶液清洗,测试复合膜的稳定性 和耐碱性。

结论

1. 成功制备了具有荷正电性的复合纳滤膜;2. 通 过通量和截留数据拟合分析得出该膜截留尺寸 在1.5 nm 和2 nm 之间,属于疏松纳滤膜,可用 于相应尺度分离;3. 该复合膜具有良好的稳定性 及耐碱性,应用范围更广。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbari, A., Desclaux, S., Rouch, J.C., et al., 2006. New UV-photografted nanofiltration membranes for the treatment of colored textile dye effluents. Journal of Membrane Science, 286(1-2):342–350. http://dx.doi.org/10.1016/j.memsci.2006.10.024

    Article  Google Scholar 

  • Bouchoux, A., Roux-De Balmann, H., Lutin, F., 2005. Nanofiltration of glucose and sodium lactate solutions. Journal of Membrane Science, 258(1-2):123–132. http://dx.doi.org/10.1016/j.memsci.2005.03.002

    Article  Google Scholar 

  • Bowen, W.R., Mohammad, A.W., Hilal, N., 1997. Characterisation of nanofiltration membranes for predictive purposes—use of salts, uncharged solutes and atomic force microscopy. Journal of Membrane Science, 126(1):91–105. http://dx.doi.org/10.1016/S0376-7388(96)00276-1

    Article  Google Scholar 

  • Chan, E.P., Lee, J.H., Chung, J.Y., et al., 2012. An automated spin-assisted approach for molecular layer-by-layer assembly of crosslinked polymer thin films. Review of Scientific Instruments, 83(11):114102. http://dx.doi.org/10.1063/1.4767289

    Article  Google Scholar 

  • Chen, J., Chen, X., Yin, X., et al., 2009. Bioinspired fabrication of composite pervaporation membranes with high permeation flux and structural stability. Journal of Membrane Science, 344(1-2):136–143. http://dx.doi.org/10.1016/j.memsci.2009.07.044

    Article  Google Scholar 

  • Cheng, C., Nie, S., Li, S., et al., 2013. Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. Journal of Materials Chemistry B, 1(3):265–275. http://dx.doi.org/10.1039/C2TB00025C

    Article  Google Scholar 

  • Della Vecchia, N.F., Avolio, R., Alfè, M., et al., 2013. Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point. Advanced Functional Materials, 23(10):1331–1340. http://dx.doi.org/10.1002/adfm.201202127

    Article  Google Scholar 

  • Dreyer, D.R., Miller, D.J., Freeman, B.D., et al., 2012. Elucidating the structure of poly(dopamine). Langmuir, 28(15):6428–6435. http://dx.doi.org/10.1021/la204831b

    Article  Google Scholar 

  • Feng, C., Xu, J., Li, M., et al., 2014. Studies on a novel nanofiltration membrane prepared by cross-linking of polyethyleneimine on polyacrylonitrile substrate. Journal of Membrane Science, 451:103–110. http://dx.doi.org/10.1016/j.memsci.2013.10.003

    Article  Google Scholar 

  • Ji, Y.L., An, Q.F., Zhao, Q., et al., 2012. Novel composite nanofiltration membranes containing zwitterions with high permeate flux and improved anti-fouling performance. Journal of Membrane Science, 390-391:243–253. http://dx.doi.org/10.1016/j.memsci.2011.11.047

    Article  Google Scholar 

  • Jiang, J.H., Zhu, L.P., Li, X.L., et al., 2010. Surface modification of PEporous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin. Journal of Membrane Science, 364(1-2):194–202. http://dx.doi.org/10.1016/j.memsci.2010.08.017

    Article  Google Scholar 

  • Jiang, J.H., Zhu, L.P., Zhu, L.J., et al., 2011. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir, 27(23): 14180–14187. http://dx.doi.org/10.1021/la202877k

    Article  Google Scholar 

  • Kang, S.M., Hwang, N.S., Yeom, J., et al., 2012. One-step multipurpose surface functionalization by adhesive catecholamine. Advanced Functional Materials, 22(14): 2949–2955. http://dx.doi.org/10.1002/adfm.201200177

    Article  Google Scholar 

  • Kasemset, S., Lee, A., Miller, D.J., et al., 2013. Effect of polydopamine deposition conditions on fouling resistance, physical properties, and permeation properties of reverse osmosis membranes in oil/water separation. Journal of Membrane Science, 425-426:208–216. http://dx.doi.org/10.1016/j.memsci.2012.08.049

    Article  Google Scholar 

  • Lee, H., Dellatore, S.M., Miller, W.M., et al., 2007. Musselinspired surface chemistry for multifunctional coatings. Science, 318(5849):426–430. http://dx.doi.org/10.1126/science.1147241

    Article  Google Scholar 

  • Li, M., Xu, J., Chang, C.Y., et al., 2014. Bioinspired fabrication of composite nanofiltration membrane based on the formation of DA/PEI layer followed by cross-linking. Journal of Membrane Science, 459:62–71. http://dx.doi.org/10.1016/j.memsci.2014.01.038

    Article  Google Scholar 

  • Li, X.L., Zhu, L.P., Jiang, J.H., et al., 2011a. Hydrophilic nanofiltration membranes with self-polymerized and strongly-adhered polydopamine as separating layer. Chinese Journal of Polymer Science, 30(2):152–163 (in Chinese). http://dx.doi.org/10.1007/s10118-012-1107-5

    Article  Google Scholar 

  • Li, X.L., Zhu, L.P., Xu, Y.Y., et al., 2011b. A novel positively charged nanofiltration membrane prepared from N, N-dimethylaminoethyl methacrylate by quaternization cross-linking. Journal of Membrane Science, 374(1-2): 33–42. http://dx.doi.org/10.1016/j.memsci.2011.03.006

    Article  Google Scholar 

  • Miller, M.D., Bruening, M.L., 2004. Controlling the nanofiltration properties of multilayer polyelectrolyte membranes through variation of film composition. Langmuir, 20(26):11545–11551. http://dx.doi.org/10.1021/la0479859

    Article  Google Scholar 

  • Nghiem, L.D., Schäfer, A.I., Elimelech, M., 2004. Removal of natural hormones by nanofiltration membranes measurement, modeling, and mechanisms. Environmental Science & Technology, 38(6):1888–1896. http://dx.doi.org/10.1021/es034952r

    Article  Google Scholar 

  • Ouyang, L., Malaisamy, R., Bruening, M.L., 2008. Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations. Journal of Membrane Science, 310(1-2):76–84. http://dx.doi.org/10.1016/j.memsci.2007.10.031

    Article  Google Scholar 

  • Riera-Torres, M., Gutierrez-Bouzan, C., Crespi, M., 2010. Combination of coagulation-flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination, 252(1-3):53–59. http://dx.doi.org/10.1016/j.desal.2009.11.002

    Article  Google Scholar 

  • Saeki, D., Imanishi, M., Ohmukai, Y., et al., 2013. Stabilization of layer-by-layer assembled nanofiltration membranes by crosslinking via amide bond formation and siloxane bond formation. Journal of Membrane Science, 447:128–133. http://dx.doi.org/10.1016/j.memsci.2013.07.022

    Article  Google Scholar 

  • Schaep, J., Vandecasteele, C., 2001. Evaluating the charge of nanofiltration membranes. Journal of Membrane Science, 188(1):129–136. http://dx.doi.org/10.1016/S0376-7388(01)00368-4

    Article  Google Scholar 

  • Schaep, J., van der Bruggen, B., Vandecasteele, C., et al., 1998. Influence of ion size and charge in nanofiltration. Separation and Purification Technology, 14(1-3):155–162. http://dx.doi.org/10.1016/S1383-5866(98)00070-7

    Article  Google Scholar 

  • Schaep, J., Vandecasteele, C., Peeters, B., et al., 1999. Characteristics and retention properties of a mesoporous γ-Al2O3 membrane for nanofiltration. Journal of Membrane Science, 163(2):229–237. http://dx.doi.org/10.1016/S0376-7388(99)00163-5

    Article  Google Scholar 

  • Singh, S., Khulbe, K.C., Matsuura, T., et al., 1998. Membrane characterization by solute transport and atomic force microscopy. Journal of Membrane Science, 142(1):111–127.

    Article  Google Scholar 

  • Szymczyk, A., Fievet, P., 2005. Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model. Journal of Membrane Science, 252(1-2):77–88. http://dx.doi.org/10.1016/j.memsci.2004.12.002

    Article  Google Scholar 

  • Tian, Y., Su, B., Jiang, L., 2014. Interfacial material system exhibiting superwettability. Advanced Materials, 26(40): 6872–6897. http://dx.doi.org/10.1002/adma.201400883

    Article  Google Scholar 

  • van der Bruggen, B., Schaep, J., Wilms, D., et al., 2000. A comparison of models to describe the maximal retention of organic molecules in nanofiltration. Separation Science and Technology, 35(2):169–182. http://dx.doi.org/10.1081/SS-100100150

    Article  Google Scholar 

  • Vanherck, K., Vandezande, P., Aldea, S.O., et al., 2008. Cross-linked polyimide membranes for solvent resistant nanofiltration in aprotic solvents. Journal of Membrane Science, 320(1-2):468–476. http://dx.doi.org/10.1016/j.memsci.2008.04.026

    Article  Google Scholar 

  • Xu, L.Q., Yang, W.J., Neoh, K.G., et al., 2010. Dopamineinduced reduction and functionalization of graphene oxide nanosheets. Macromolecules, 43(20):8336–8339. http://dx.doi.org/10.1021/ma101526k

    Article  Google Scholar 

  • Yang, H.C., Liao, K.J., Huang, H., et al., 2014. Musselinspired modification of a polymer membrane for ultrahigh water permeability and oil-in-water emulsion separation. Journal of Materials Chemistry A, 2(26):10225–10230. http://dx.doi.org/10.1039/c4ta00143e

    Article  Google Scholar 

  • Zeman, L.J., Zydney, A.L., 1996. Microfiltration and Ultrafiltration: Principles and Applications. Marcel Dekker, New York, USA.

    Google Scholar 

  • Zhao, N., Wang, Z., Cai, C., et al., 2014. Bioinspired materials: from low to high dimensional structure. Advanced Materials, 26(41):6994–7017. http://dx.doi.org/10.1002/adma.201401718

    Article  Google Scholar 

  • Zhou, M., Nemade, P.R., Lu, X., et al., 2007. New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly. Journal of the American Chemical Society, 129(31):9574–9575. http://dx.doi.org/10.1021/ja073067w

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-ping Zhu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 51273176 and 51573159) and the Fundamental Research Funds for the Central Universities (No. 2016QNA4032), China

ORCID: Li-ping ZHU, http://orcid.org/0000-0002-1553-4190

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Pb., Liu, Cj., Sun, J. et al. Fabrication of composite nanofiltration membranes by dopamine-assisted poly(ethylene imine) deposition and cross-linking. J. Zhejiang Univ. Sci. A 18, 138–150 (2017). https://doi.org/10.1631/jzus.A1600308

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1600308

Key words

CLC number

关键词

Navigation