Skip to main content
Log in

Explicit finite element analysis and experimental verification of a sliding lead rubber bearing

一种可滑移式铅芯橡胶支座的显式数值模拟与试验验证

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Based on the explicit finite element (FE) software ANSYS/LS-DYNA, the FE model for a sliding lead rubber bearing (SLRB) is developed. The design parameters of the laminated steel, including thickness, density, and Young’s modulus, are modified to greatly enlarge the time step size of the model. Three types of contact relations in ANSYS/LS-DYNA are employed to analyze all the contact relations existing in the bearing. Then numerical simulations of the compression tests and a series of correlation tests on compression-shear properties for the bearing are conducted, and the numerical results are further verified by experimental and theoretical ones. Results show that the developed FE model is capable of reproducing the vertical stiffness and the particular hysteresis behavior of the bearing. The shear stresses of the intermediate rubber layer obtained from the numerical simulation agree well with the theoretical results. Moreover, it is observed from the numerical simulation that the lead cylinder undergoes plastic deformation even if no additional lateral load is applied, and an extremely large plastic deformation when a shear displacement of 115 mm is applied. Furthermore, compared with the implicit analysis, the computational cost of the explicit analysis is much more acceptable. Therefore, it can be concluded that the proposed modeling method for the SLRB is accurate and practical.

中文概要

目 的

随着隔震技术在工程结构中的逐步推广应用, 橡 胶隔震支座的试验与数值模拟都得到国内外工 程研究人员的重视。其中后者因支座大变形时计算较难收敛、铅芯与周边橡胶以及钢板的复杂接 触关系较难模拟、采用隐式积分算法时计算规模 较难控制等问题, 目前仍是这一方向的研究热 点。本文旨在探讨基于显式积分算法对一种新型 可滑移式铅芯橡胶支座进行准确可行的数值模 拟的方法。

创新点

1. 探究基于显式积分算法的隔震支座数值模拟方 法; 2. 采取多种方法有效地控制了数值模拟计算 规模,同时实现了较高的数值模拟精度; 3. 采用 程序中提供的3 种接触方式较好地模拟了支座中 存在的复杂接触关系。

方法

本文主要采用4 种方法减小数值模拟计算规模: 1. 激活程序内置的质量缩放功能; 2. 合理增大支 座中对支座竖向刚度与水平剪切性能影响较小 的非关键部件——叠层钢板的厚度; 3. 合理减小 叠层钢板的弹性模量; 4. 考虑到支座中所有材料 均未考虑材料的率变效应, 即加载速率对支座的 力学性能没有影响, 本文数值模拟中所用加载频 率为实际加载频率的10 倍。此外, 本文采用了 一般接触、绑定接触与单边接触模拟支座中不同 的接触关系。

结论

1. 显式积分的计算时间步长由2.4×10−7 s 增大到 3.5×10−6 s; 2. 与试验结果对比验证了本文提出的 基于显式积分算法对该新型可滑移式铅芯橡胶 支座进行数值模拟的方法的准确实用性; 3. 该支 座在纯压作用下, 部分铅芯发生塑性变形, 而在 最大剪切位移时, 铅芯发生了很大的塑性流动变 形; 4. 与采用隐式算法对该支座进行数值模拟研 究所用时间相比, 显式算法所用时间少很多。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, M., Yoshida, J., Fujino, Y., 2004a. Multiaxial behaviors of laminated rubber bearings and their modeling. I: Experimental study. Journal of Structural Engineering, 130(8): 1119–1132. http://dx.doi.org/10.1061/(ASCE)0733-9445(2004)130:8 (1119)

    Google Scholar 

  • Abe, M., Yoshida, J., Fujino, Y., 2004b. Multiaxial behaviors of laminated rubber bearings and their modeling. II: Modeling. Journal of Structural Engineering, 130(8): 1133–1144. http://dx.doi.org/10.1061/(ASCE)0733-9445(2004)130:8 (1133)

    Google Scholar 

  • Ali, H.E.M., Abdel-Ghaffar, A.M., 1995. Modeling of rubber and lead passive-control bearings for seismic analysis. Journal of Structural Engineering, 121(7): 1134–1144. http://dx.doi.org/10.1061/(ASCE)0733-9445(1995)121:7(1134)

    Article  Google Scholar 

  • Amin, A.F.M.S., Alam, M.S., Okui, Y., 2002. An improved hyperelasticity relation in modeling viscoelasticity response of natural and high damping rubbers in compression: experiments, parameter identification and numerical verification. Mechanics of Materials, 34(2): 75–95. http://dx.doi.org/10.1016/S0167-6636(01)00102-8

    Article  Google Scholar 

  • Amin, A.F.M.S., Wiraguna, S.I., Bhuiyan, A.R., et al., 2006a. Hyperelasticity model for finite element analysis of natural and high damping rubbers in compression and shear. Journal of Engineering Mechanics, 132(1): 54–64. http://dx.doi.org/10.1061/(ASCE)0733-9399(2006)132:1(54)

    Article  Google Scholar 

  • Amin, A.F.M.S., Lion, A., Sekita, S., et al., 2006b. Nonlinear dependence of viscosity in modeling the rate-dependent response of natural and high damping rubbers in compression and shear: experimental identification and numerical verification. International Journal of Plasticity, 22(9): 1610–1657. http://dx.doi.org/10.1016/j.ijplas.2005.09.005

    Article  MATH  Google Scholar 

  • Basu, B., Bursi, O.S., Casciati, F., et al., 2014. A European association for the control of structures joint perspective. Recent studies in civil structural control across Europe. Structural Control and Health Monitoring, 21(12): 1414–1436. http://dx.doi.org/10.1002/stc.1652

    Article  Google Scholar 

  • Constantinou, M.C., Kartoum, A., Kelly, J.M., 1992. Analysis of compression of hollow circular elastomeric bearings. Engineering Structures, 142(2): 103–111. http://dx.doi.org/10.1016/0141-0296(92)90036-P

    Article  Google Scholar 

  • de Mari, G., Domaneschi, M., Ismail, M., et al., 2015. Reduced-order coupled bidirectional modeling of the Roll-N-Cage isolator with application to the updated bridge benchmark. Acta Mechanica, 226(10): 3533–3553. http://dx.doi.org/10.1007/s00707-015-1394-3

    Article  Google Scholar 

  • Domaneschi, M., 2012. Simulation of controlled hysteresis by the semi-active Bouc-Wen model. Computers and Structures, 106-107:245–257. http://dx.doi.org/10.1016/j.compstruc.2012.05.008

    Article  Google Scholar 

  • Doudoumis, I.N., Gravalas, F., Doudoumis, N.I., 2005. Analytical modeling of elastomeric lead-rubber bearings with the use of finite element micromodels. 5th GRACM International Congress on Computational Mechanics.

    Google Scholar 

  • Eröz, M., DesRoches, R., 2013. A comparative assessment of sliding and elastomeric seismic isolation in a typical multi-span bridge. Journal of Earthquake Engineering, 17(5): 637–657. http://dx.doi.org/10.1080/13632469.2013.771589

    Article  Google Scholar 

  • Gur, S., Mishra, S.K., Chakraborty, S., 2014. Performance assessment of buildings isolated by shape-memory-alloy rubber bearing: comparison with elastomeric bearing under near-fault earthquakes. Structural Control and Health Monitoring, 21(4): 449–465. http://dx.doi.org/10.1002/stc.1576

    Article  Google Scholar 

  • Hallquist, J.O., 2014. LS-DYNA Theory Manual. Livermore Software Technology Corporation, California, USA.

    Google Scholar 

  • Han, X., Warn, G.P., 2014. Mechanistic model for simulating critical behavior in elastomeric bearings. Journal of Structural Engineering, 141(5): 04014140. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001084

    Article  Google Scholar 

  • Hwang, J.S., Chiou, J.M., Sheng, L.H., et al., 1996. A refined model for base-isolated bridge with bi-linear hysteretic bearings. Earthquake Spectra, 12(2): 245–273. http://dx.doi.org/10.1193/1.1585879

    Article  Google Scholar 

  • Imbimbo, M., de Luca, A., 1998. F.E. stress analysis of rubber bearings under axial loads. Computers and Structures, 68(1–3): 31–39. http://dx.doi.org/10.1016/S0045-7949(98)00038-8

    Google Scholar 

  • Imbsen, R.A., 2007. AASHTO Guide Specifications for LRFD Seismic Bridge Design. American Association of State Highway and Transportation Officials, USA.

    Google Scholar 

  • Kalpakidis, I.V., Constantinou, M.C., Whittaker, A.S., 2010. Modeling strength degradation in lead-rubber bearings under earthquake shaking. Earthquake Engineering and Structural Dynamics, 39(13): 1533–1549. http://dx.doi.org/10.1002/eqe.1039

    Article  Google Scholar 

  • Kelly, J.M., Marsico, M.R., 2013. Tension buckling in rubber bearings affected by cavitation. Engineering Structures, 56: 656–663. http://dx.doi.org/10.1016/j.engstruct.2013.05.051

    Article  Google Scholar 

  • Kelly, J.M., Takhirov, S.M., 2007. Tension buckling in multilayer elastomeric isolation bearings. Journal of Mechanics of Materials and Structures, 2(8): 1591–1605.

    Article  Google Scholar 

  • Medel-Vera, C., Ji, T.J., 2015. Seismic protection technology for nuclear power plants: a systematic review. Journal of Nuclear Science and Technology, 52(5): 607–632. http://dx.doi.org/10.1080/00223131.2014.980347

    Article  Google Scholar 

  • Miyamura, T., Yamashita, T., Akiba, H., et al., 2015. Dynamic FE simulation of four-story steel frame modeled by solid elements and its validation using results of full-scale shake-table test. Earthquake Engineering and Structural Dynamics, 44(9): 1449–1469. http://dx.doi.org/10.1002/eqe.2526

    Article  Google Scholar 

  • Nguyen, H.H., Tassoulas, J.L., 2010. Directional effects of shear combined with compression on bridge elastomeric bearings. Journal of Bridge Engineering, 15(1): 73–80. http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0000034

    Article  Google Scholar 

  • Ohsaki, M., Miyamura, T., Kohiyama, M., et al., 2009. Highprecision finite element analysis of elastoplastic dynamic responses of super-high-rise steel frames. Earthquake Engineering and Structural Dynamics, 38(5): 635–654. http://dx.doi.org/10.1002/eqe.900

    Article  Google Scholar 

  • Ohsaki, M., Miyamura, T., Kohiyama, M., et al., 2015. Finiteelement analysis of laminated rubber bearing of building frame under seismic excitation. Earthquake Engineering and Structural Dynamics, 44(11): 1881–1898. http://dx.doi.org/10.1002/eqe.2570

    Article  Google Scholar 

  • Pan, P., Ye, L.P., Shi, W., et al., 2012. Engineering practice of seismic isolation and energy dissipation structures in China. Science China Technological Sciences, 55(11): 3036–3046. http://dx.doi.org/10.1007/s11431-012-4922-6

    Article  Google Scholar 

  • Perotti, F., Domaneschi, M., de Grandis, S., 2013. The numerical computation of seismic fragility of base-isolated nuclear power plants buildings. Nuclear Engineering and Design, 262: 189–200. http://dx.doi.org/10.1016/j.nucengdes.2013.04.029

    Article  Google Scholar 

  • Roussis, P.C., Constantinou, M.C., Erdik, M., et al., 2003. Assessment of performance of seismic isolation system of Bolu Viaduct. Journal of Bridge Engineering, 8(4): 182–190. http://dx.doi.org/10.1061/(ASCE)1084-0702(2003)8:4(182)

    Article  Google Scholar 

  • Ryan, K.L., Kelly, J.M., Chopra, A.K., 2004. Experimental observation of axial load effects in isolation bearings. 13th World Conference on Earthquake Engineering, Paper No. 1707.

  • SAC (Standardization Administration of the People’s Republic of China), 2006. Rubber Bearings—Part II: Elastomeric Seismic-Protection Isolators for Bridges, GB20688.2-2006. Standardization Administration of the People’s Republic of China (in Chinese).

  • Sugita, H., Mahin, S.A., Doboku, K., 1994. Manual for Menshin Design of Highway Bridges: Ministry of Construction, Japan. Report No. UCB/EERC-94/10, University of California, Berkeley, USA.

    Google Scholar 

  • Takayama, M., Tada, H., Tanaka, R., 1992. Finite-element analysis of laminated rubber bearing used in baseisolation system. Rubber Chemistry and Technology, 65(1): 46–62. http://dx.doi.org/10.5254/1.3538607

    Article  Google Scholar 

  • Tyler, R.G., Robinson, W.H., 1984. High-strain tests on leadrubber bearings for earthquake loadings. Bulletin of the New Zealand National Society Earthquake Engineering, 17(2): 90–105.

    Google Scholar 

  • Wang, R.Z., Chen, S.K., Liu, K.Y., et al., 2014. Analytical simulations of the steel-laminated elastomeric bridge bearing. Journal of Mechanics, 30(4): 373–382. http://dx.doi.org/10.1017/jmech.2014.24

    Article  Google Scholar 

  • Warn, G.P., Ryan, K.L., 2012. A review of seismic isolation buildings: historical development and research needs. Buildings, 2(3): 300–325. http://dx.doi.org/10.3390/buildings2030300

    Article  Google Scholar 

  • Warn, G.P., Whittaker, A.S., Constantinou, M.C., 2007. Vertical stiffness of elastomeric and lead-rubber seismic isolation bearings. Journal of Structural Engineering, 133(9): 1227–1236. http://dx.doi.org/10.1061/(ASCE)0733-9445(2007)133:9 (1227)

    Article  Google Scholar 

  • Weisman, J., Warn, G.P., 2012. Stability of elastomeric and lead-rubber seismic isolation bearings. Journal of Structural Engineering, 138(2): 215–223. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000459

    Article  Google Scholar 

  • Xing, C.X., Wang, H., Li, A.Q., et al., 2012. Design and experimental verification of a new multi-functional bridge seismic isolation bearing. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(12): 904–914. http://dx.doi.org/10.1631/jzus.A1200106

    Article  Google Scholar 

  • Yoshida, J., Abe, M., Fujino, Y., et al., 2004. Threedimensional finite-element analysis of high damping rubber bearings. Journal of Engineering Mechanics, 130(5): 607–620. http://dx.doi.org/10.1061/(ASCE)0733-9399(2004)130:5 (607)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 51278104, 51578151, and 51438002) and the Program for New Century Excellent Talents in University of Ministry of Education, China (No. NCET-13-0128)

ORCID: Yi-feng WU, http://orcid.org/0000-0002-6932-2329; Hao WANG, http://orcid.org/0000-0002-1187-0824

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Yf., Wang, H., Li, Aq. et al. Explicit finite element analysis and experimental verification of a sliding lead rubber bearing. J. Zhejiang Univ. Sci. A 18, 363–376 (2017). https://doi.org/10.1631/jzus.A1600302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1600302

Keywords

关键词

CLC number

Navigation