Skip to main content
Log in

Sound quality evaluation of high-speed train interior noise by adaptive Moore loudness algorithm

基于自适应Moore 响度算法研究高速列车车内声品质

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

An online experiment to acquire the interior noise of a China Railways High-speed (CRH) train showed that it was mainly composed of middle-low frequency components and could not be described properly by linear or A-weighted sound pressure level (SPL). Thus, the appropriate way to evaluate the high-speed train interior noise is to use sound quality parameters, and the most important is loudness. To overcome the disadvantages of the existing loudness algorithms, a novel signal-adaptive Moore loudness algorithm (AMLA) based on the equivalent rectangular bandwidth (ERB) spectrum was introduced. The validation reveals that AMLA can obtain higher accuracy and efficiency, and the simulated dark red noise conforms best to the high-speed train interior noise by loudness and auditory assessment. The main loudness component of the interior noise is below 27.6 ERB rate (erbr), and the sound quality of the interior noise is relatively stable between 300–350 km/h. The specific loudness components among 12–15 erbr stay invariable throughout the acceleration or deceleration process while components among 20–27 erbr are evidently speed related. The unusual random noise is effectively identified, which indicates that AMLA is an appropriate method for sound quality assessment of the high-speed train under both steady and transient conditions.

中文概要

目的

高速列车的车内噪声以中低频为主,传统的线性和A 计权声压级都无法客观描述人耳的听觉感受。本文旨在探索Moore 响度应用于车内声品质分析的可行性。

创新点

1. 提出了一种自适应Moore 响度算法(AMLA),该算法可有效提升计算的精度和效率;2. 采用AMLA 分析了高速列车车内噪声在不同工况下的声品质特征。

方法

1. 基于信号的等矩形带宽(ERB)谱,提出AMLA方法的理论;2. 参照ANSI 标准中的仿真信号,评价AMLA 的计算精度和效率;3. 采用AMLA辨别有色噪声信号与车内噪声样本,验证声品质分析的有效性;4. 结合在线搭载试验,运用AMLA 分析稳态工况(不同行车速度和空间位置等)和瞬态工况(加速和减速等)下的车内声品质特征。

结论

1. 相比传统方法,AMLA 方法的计算精度和效率相对较高,且适用范围更广;2. 高速列车的车内噪声与深红噪声信号具有相似的特征响度分布;3. 稳态工况下,车内噪声的响度成分集中在27.6 erbr 以内,在300~350 km/h 的速度区间内车内声品质较稳定,空间分布特征为“端部大、中间小”;4. 瞬态工况下,车内噪声在20~27 erbr内的响度成分与列车速度密切相关,而在12~15 erbr 内的成分相对稳定。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ANSI (American National Standards Institute), 2005. Procedure for the Computation of Loudness of Steady Sounds, ANSI S3.4-2005. National Standards of America.

    Google Scholar 

  • Cook, V.G.C., Ali, A., 2012. End-of-line inspection for annoying noises in automobiles: trends and perspectives. Applied Acoustics, 73(3): 265–275. http://dx.doi.org/10.1016/j.apacoust.2011.06.019

    Article  Google Scholar 

  • Deng, Y., Xiao, X., He, B., et al., 2014. Analysis of external noise spectrum of high-speed railway. Journal of Central South University, 21(12): 4753–4761. http://dx.doi.org/10.1007/s11771-014-2485-3

    Article  Google Scholar 

  • Ding, J.J., Pei, S.C., 2013. Heisenberg’s uncertainty principles for the 2-D nonseparable linear canonical transforms. Signal Processing, 93(5): 1027–1043. http://dx.doi.org/10.1016/j.sigpro.2012.11.023

    Article  Google Scholar 

  • Fletcher, H., Munson, W.A., 1933. Loudness, its definition, measurement and calculation. Journal of the Acoustical Society of America, 5(2): 82–108. http://dx.doi.org/10.1121/1.1915637

    Article  Google Scholar 

  • Glasberg, B.R., Moore, B., 2002. A model of loudness applicable to time-varying sounds. Journal of the Audio Engineering Society, 50(5): 331–342.

    Google Scholar 

  • Gu, X.A., 2006. Railway environmental noise control in China. Journal of Sound and Vibration, 293(3–5): 1078–1085. http://dx.doi.org/10.1016/j.jsv.2005.08.058

    Google Scholar 

  • Hellman, R., Zwicker, E., 1987. Why can a decrease in dB(A) produce an increase in loudness? Journal of the Acoustical Society of America, 82(5): 1700–1705. http://dx.doi.org/10.1121/1.395162

    Article  Google Scholar 

  • ISO (International Organization for Standardization), 1975. Acoustic-method for Calculation Loudness Level, ISO 532:1975. ISO.

    Google Scholar 

  • Jiao, Z.X., Liu, W., He, L.S., 2012. Three methods for calculating Moore’s loudness. China Measurement and Test, 38(1): 5–8 (in Chinese).

    Google Scholar 

  • Jin, X.S., 2014. Key problems faced in high-speed train operation. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(12): 936–945. http://dx.doi.org/10.1631/jzus.A1400338

    Article  Google Scholar 

  • Mao, J., Hao, Z.Y., Zheng, K., et al., 2013. Experimental validation of sound quality simulation and optimization of a four-cylinder diesel engine. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(5): 341–352. http://dx.doi.org/10.1631/jzus.A1300055

    Article  Google Scholar 

  • Matsumoto, A., Sato, Y., Ohno, H., et al., 2005. Improvement of bogie curving performance by using friction modifier to rail/wheel interface: verification by full-scale rolling stand test. Wear, 258(7–8): 1201–1208. http://dx.doi.org/10.1016/j.wear.2004.03.063

    Article  Google Scholar 

  • Mellet, C., Létourneaux, F., Poisson, F., et al., 2006. High speed train noise emission: latest investigation of the aerodynamic/rolling noise contribution. Journal of Sound and Vibration, 293(3–5): 535–546. http://dx.doi.org/10.1016/j.jsv.2005.08.069

    Article  Google Scholar 

  • Moore, B., Glasberg, B.R., Baer, T., 1997. A model for the prediction of thresholds, loudness, and partial loudness. Journal of the Audio Engineering Society, 45(4): 224–240.

    Google Scholar 

  • Ning, J., Lin, J., Zhang, B., 2016. Time–frequency processing of track irregularities in high-speed train. Mechanical Systems and Signal Processing, 66–67: 339–348. http://dx.doi.org/10.1016/j.ymssp.2015.04.031

    Article  Google Scholar 

  • Noh, H., Choi, S., Hong, S., et al., 2014. Investigation of noise sources in high-speed trains. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 228(3): 307–322. http://dx.doi.org/10.1177/0954409712473095

    Article  Google Scholar 

  • Park, B., Jeon, J., Choi, S., et al., 2015. Short-term noise annoyance assessment in passenger compartments of highspeed trains under sudden variation. Applied Acoustics, 97: 46–53. http://dx.doi.org/10.1016/j.apacoust.2015.04.007

    Article  Google Scholar 

  • SAC (Standardization Administration of the People’s Republic of China), 2006. The Limiting Value and Measurement Method for the Interior Noise in the Railway Passenger Coach, GB/T 12816-2006. National Standards of the People’s Republic of China (in Chinese).

    Google Scholar 

  • SAC (Standardization Administration of the People’s Republic of China), 2007. Acoustics–Normal Equal-loudness-level Contours, GB/T 4963-2007. National Standards of the People’s Republic of China (in Chinese).

    Google Scholar 

  • Sone, S., 2015. Comparison of the technologies of the Japanese Shinkansen and Chinese high-speed railways. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(10): 769–780. http://dx.doi.org/10.1631/jzus.A1500220

    Article  Google Scholar 

  • Soeta, Y., Shimokura, R., 2013. Survey of interior noise characteristics in various types of trains. Applied Acoustics, 74(10): 1160–1166. http://dx.doi.org/10.1016/j.apacoust.2013.04.002

    Article  Google Scholar 

  • Stevens, S.S., 1956. Calculation of the loudness of complex noise. Journal of the Acoustical Society of America, 28(5): 807–832. http://dx.doi.org/10.1121/1.1908487

    Article  Google Scholar 

  • Tan, P., Ma, J.E., Zhou, J., et al., 2016. Sustainability development strategy of China’s high speed rail. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(12): 923–932. http://dx.doi.org/10.1631/jzus.A1600747

    Article  Google Scholar 

  • Zhang, J., Xiao, X.B., Wang, D., et al., 2012. Characteristics and evaluation of noises in the tourist cabin of a train running at more than 350 km/h. Journal of the China Railway Society, 34(10): 23–29 (in Chinese). http://dx.doi.org/10.3969/j.issn.1001-8360.2012.10.004

    Google Scholar 

  • Zhang, X., Li, X., Hao, H., et al., 2016. A case study of interior low-frequency noise from box-shaped bridge girders induced by running trains: its mechanism, prediction and countermeasures. Journal of Sound and Vibration, 367: 129–144. http://dx.doi.org/10.1016/j.jsv.2016.01.004

    Article  Google Scholar 

  • Zheng, X., Hao, Z.Y., Wang, X., et al., 2016. A full-spectrum analysis of high-speed train interior noise under multiphysical-field coupling excitations. Mechanical Systems and Signal Processing, 75: 525–543. http://dx.doi.org/10.1016/j.ymssp.2015.12.010

    Article  Google Scholar 

  • Zhou, J., Liu, D., Li, X., et al., 2012. Pink noise: effect on complexity synchronization of brain activity and sleep consolidation. Journal of Theoretical Biology, 306: 68–72. http://dx.doi.org/10.1016/j.jtbi.2012.04.006

    Article  Google Scholar 

  • Zwicker, E., 1956. On the loudness of continuous noises. The Journal of the Acoustical Society of America, 28(4): 764. http://dx.doi.org/10.1121/1.1905031

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zheng.

Additional information

Project supported by the Fundamental Research Funds for the Central Universities (No. 2016QNA4012), China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Zheng, X., Hao, Zy. et al. Sound quality evaluation of high-speed train interior noise by adaptive Moore loudness algorithm. J. Zhejiang Univ. Sci. A 18, 690–703 (2017). https://doi.org/10.1631/jzus.A1600287

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1600287

Key words

关键词

CLC number

Navigation