Journal of Zhejiang University-SCIENCE A

, Volume 19, Issue 2, pp 158–170 | Cite as

Numerical study of heat transfer characteristics of downward supercritical kerosene flow inside circular tubes

Article
  • 5 Downloads

Abstract

The heat transfer characteristics of China RP-3 aviation kerosene flowing in a vertical downward tube with an inner diameter of 4 mm under supercritical pressures are numerically studied. A ten-species surrogate model is used to calculate the thermophysical properties of kerosene and the re-normalization group (RNG) k-ε turbulent model with the enhanced wall treatment is adopted to consider the turbulent effect. The effects of mass flow rate, wall heat flux, inlet temperature, and pressure on heat transfer are investigated. The numerical results show that three types of heat transfer deterioration exist for the aviation kerosene flow. The first type of deterioration occurred at the tube inlet region and is caused by the development of the thermal boundary layer, while the other two types are observed when the inner wall temperature or the bulk fuel temperature approaches the pseudo-critical temperature. The heat transfer coefficient increases with the increasing mass flow rate and the decreasing wall heat flux, while the inlet bulk fluid temperature only influences the starting point of the heat transfer coefficient curve plotted against the bulk fluid temperature. The increase of inlet pressure can effectively eliminate the deterioration due to the small variations of properties near the pseudo-critical point at relatively high pressure. The numerical heat transfer coefficients fit well with the empirical correlations, especially at higher pressures (about 5 MPa).

Key words

Aviation kerosene Heat transfer deterioration Supercritical pressure Numerical study 

圆管内向下流超临界航空煤油换热特性数值研究

概要

目的

超临界航空煤油在换热过程中会出现传热恶化的现象。本文旨在研究该现象产生的原因及质量流量、壁面热流、入口温度和压力对此现象的影响。

创新点

1. 分析超临界航空煤油的传热恶化现象;2. 揭示超临界航空煤油传热过程中传热恶化现象与质量流量、壁面热流、入口温度及压力的关系。

方法

利用数值模拟的方法,模拟超临界航空煤油在管内的流动换热情况,分析其换热特性,并探讨传热恶化产生的原因及影响因素。

结论

1. 传热恶化是在壁面温度达到拟临界温度或流体平均温度达到临界温度时产生的;2. 换热系数随质量流量的增加或壁面热流的降低而增大;3. 通过提高煤油的压力可以显著降低恶化现象。

关键词

航空煤油 传热恶化 超临界 数值研究 

CLC number

TK124 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANSYS, 2013. ANSYS FLUENT User’s Guide, Release 15.0. ANSYS, Inc, USA.Google Scholar
  2. Bae YY, Kim HY, 2009. Convective heat transfer to CO2 at a supercritical pressure flowing vertically upward in tubes and an annular channel. Experimental Thermal and Fluid Science, 33(2):329–339. https://doi.org/10.1016/j.expthermflusci.2008.10.002CrossRefGoogle Scholar
  3. Dang G, Zhong F, Chen L, et al., 2013. Numerical investigation on flow and convective heat transfer of aviation kerosene at supercritical conditions. Science China Technological Sciences, 56(2):416–422. https://doi.org/10.1007/s11431-012-5075-3CrossRefGoogle Scholar
  4. Dang G, Zhong F, Zhang Y, et al., 2015. Numerical study of heat transfer deterioration of turbulent supercritical kerosene flow in heated circular tube. International Journal of Heat and Mass Transfer, 85(0):1003–1011. https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.052CrossRefGoogle Scholar
  5. Deng H, Zhu K, Xu G, et al., 2012. Heat transfer characteristics of RP-3 kerosene at supercritical pressure in a vertical circular tube. Journal of Enhanced Heat Transfer, 19(5):409–421. https://doi.org/10.1615/JEnhHeatTransf.2012004966CrossRefGoogle Scholar
  6. Edwards T, 2003. Liquid fuels and propellants for aerospace propulsion: 1903–2003. Journal of Propulsion and Power, 19(6):1089–1107. https://doi.org/10.2514/2.6946CrossRefGoogle Scholar
  7. Huang D, Ruan B, Wu X, et al., 2015a. Experimental study on heat transfer of aviation kerosene in a vertical upward tube at supercritical pressures. Chinese Journal of Chemical Engineering, 23(2):425–434. https://doi.org/10.1016/j.cjche.2014.10.016CrossRefGoogle Scholar
  8. Huang D, Wu X, Wu Z, et al., 2015b. Experimental study on heat transfer of nanofluids in a vertical tube at supercritical pressures. International Communications in Heat and Mass Transfer, 63:54–61. https://doi.org/10.1016/j.icheatmasstransfer.2015.02.007CrossRefGoogle Scholar
  9. Jiang PX, Liu B, Zhao CR, et al., 2013. Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime. International Journal of Heat and Mass Transfer, 56(1–2):741–749. https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.038CrossRefGoogle Scholar
  10. Li W, Huang D, Xu GQ, et al., 2015. Heat transfer to aviation kerosene flowing upward in smooth tubes at supercritical pressures. International Journal of Heat and Mass Transfer, 85:1084–1094. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.079CrossRefGoogle Scholar
  11. Li X, Zhong F, Fan X, et al., 2010. Study of turbulent heat transfer of aviation kerosene flows in a curved pipe at supercritical pressure. Applied Thermal Engineering, 30(13):1845–1851. https://doi.org/10.1016/j.applthermaleng.2010.04.022CrossRefGoogle Scholar
  12. Li X, Huai X, Cai J, et al., 2011. Convective heat transfer characteristics of China RP-3 aviation kerosene at supercritical pressure. Applied Thermal Engineering, 31(14–15):2360–2366. https://doi.org/10.1016/j.applthermaleng.2011.03.036CrossRefGoogle Scholar
  13. Li Z, Wu Y, Tang G, et al., 2015. Comparison between heat transfer to supercritical water in a smooth tube and in an internally ribbed tube. International Journal of Heat and Mass Transfer, 84:529–541. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.047CrossRefGoogle Scholar
  14. Pizzarelli M, Urbano A, Nasuti F, 2010. Numerical analysis of deterioration in heat transfer to near-critical rocket propellants. Numerical Heat Transfer, Part A: Applications, 57(5):297–314. https://doi.org/10.1080/10407780903583016CrossRefGoogle Scholar
  15. Stigemeier B, Meyer M, Taghavi R, 2002. A thermal stability and heat transfer investigation of five hydrocarbon fuels: JP-7, JP-8, JP-8+100, JP-10, and RP-1. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, No. AIAA 2002-3873.Google Scholar
  16. Urbano A, Nasuti F, 2013. Conditions for the occurrence of heat transfer deterioration in light hydrocarbons flows. International Journal of Heat and Mass Transfer, 65: 599–609. https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.038CrossRefGoogle Scholar
  17. Wang J, Li H, Yu S, et al., 2011. Investigation on the characteristics and mechanisms of unusual heat transfer of supercritical pressure water in vertically-upward tubes. International Journal of Heat and Mass Transfer, 54(9–10):1950–1958. https://doi.org/10.1016/j.ijheatmasstransfer.2011.01.008CrossRefGoogle Scholar
  18. Wang K, Xu X, Wu Y, et al., 2015. Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes. The Journal of Supercritical Fluids, 99: 112–120. https://doi.org/10.1016/j.supflu.2015.02.001CrossRefGoogle Scholar
  19. Wang YZ, Hua YX, Meng H, 2010. Numerical studies of supercritical turbulent convective heat transfer of cryogenic-propellant methane. Journal of Thermophysics and Heat Transfer, 24(3):490–500. https://doi.org/10.2514/1.46769CrossRefGoogle Scholar
  20. Xu K, Meng H, 2015a. Analyses of surrogate models for calculating thermophysical properties of aviation kerosene RP-3 at supercritical pressures. Science China Technological Sciences, 58(3):510–518. https://doi.org/10.1007/s11431-014-5752-5CrossRefGoogle Scholar
  21. Xu K, Meng H, 2015b. Modeling and simulation of supercritical-pressure turbulent heat transfer of aviation kerosene with detailed pyrolytic chemical reactions. Energy & Fuels, 29(7):4137–4149. https://doi.org/10.1021/acs.energyfuels.5b00097CrossRefGoogle Scholar
  22. Yang C, Xu J, Wang X, et al., 2013. Mixed convective flow and heat transfer of supercritical CO2 in circular tubes at various inclination angles. International Journal of Heat and Mass Transfer, 64:212–223. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.033CrossRefGoogle Scholar
  23. Zhang C, Xu G, Gao L, et al., 2012. Experimental investigation on heat transfer of a specific fuel (RP-3) flows through downward tubes at supercritical pressure. The Journal of Supercritical Fluids, 72:90–99. https://doi.org/10.1016/j.supflu.2012.07.011CrossRefGoogle Scholar
  24. Zhang C, Xu G, Deng H, et al., 2013. Investigation of flow resistance characteristics of endothermic hydrocarbon fuel under supercritical pressures. Propulsion and Power Research, 2(2):119–130. https://doi.org/10.1016/j.jppr.2013.04.002CrossRefGoogle Scholar
  25. Zhong F, Fan X, Yu G, et al., 2009a. Heat transfer of aviation kerosene at supercritical conditions. Journal of Thermophysics and Heat Transfer, 23(3):543–550. https://doi.org/10.2514/1.41619CrossRefGoogle Scholar
  26. Zhong F, Fan X, Yu G, et al., 2009b. Thermal cracking of aviation kerosene for scramjet applications. Science in China Series E: Technological Sciences, 52(9):2644–2652. https://doi.org/10.1007/s11431-009-0090-8CrossRefGoogle Scholar
  27. Zhong F, Fan X, Yu G, et al., 2011. Thermal cracking and heat sink capacity of aviation kerosene under supercritical conditions. Journal of Thermophysics and Heat Transfer, 25(3):450–456. https://doi.org/10.2514/1.51399CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Energy EngineeringZhejiang UniversityHangzhouChina
  2. 2.Department of Energy Engineering, Collaborative Innovation Center of Advanced Aero-engineZhejiang UniversityHangzhouChina

Personalised recommendations