Skip to main content
Log in

Stationary response of stochastically excited nonlinear systems with continuous-time Markov jump

随机激励下连续时间马尔科夫跳变非线性系统 的平稳响应研究

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

An approximate method for predicting the stationary response of stochastically excited nonlinear systems with continuous-time Markov jump is proposed. By using the stochastic averaging method, the original system is reduced to one governed by a 1D averaged Itô equation for the total energy with the Markov jump process as parameter. A Fokker-Planck- Kolmogorov (FPK) equation is then deduced, from which the approximate stationary probability density of the response of the original system is obtained for different jump rules. To illustrate the effectiveness of the proposed method, a stochastically excited Markov jump Duffing system is worked out in detail.

摘要

目的

提出一种预测随机激励下连续时间马尔科夫跳 变非线性系统的平稳响应的近似方法。

创新点

1. 得到了含有马尔科夫跳变参数的关于能量的 平均Itô 方程;2. 建立了含有马尔科夫跳变参数 的平均Itô 方程相应的FPK 方程。

方法

1. 将一个随机激励的马尔科夫跳变非线性系统 由状态方程转化为等价的Itô 方程,并根据Itô 微分法则给出哈密顿量(系统总能量)的Itô 方 程;2. 通过随机平均法,得到关于系统能量的 平均Itô 方程;3. 推导并求解相应的FPK 方程。

结论

1. 跳变规律对马尔科夫跳变非线性系统随机响 应具有重要影响;2. 理论结果与数字模拟结果 吻合验证了理论方法的准确性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdollahi, F., Khorasani, K., 2011. A decentralized Markovian jump H control routing strategy for mobile multiagent networked systems. IEEE Transactions on Control Systems Technology, 19(2):269–283. http://dx.doi.org/10.1109/TCST.2010.2046418

    Article  Google Scholar 

  • Costa, O.L.V., Fragoso, M.D., Marques, R.P., 2006. Discretetime Markov Jump Linear Systems. Springer Science & Business Media, New York, USA.

    Google Scholar 

  • Costa, O.L.V., Fragoso, M.D., Todorov, M.G., 2013. Continuous-time Markov Jump Linear Systems. Springer Berlin Heidelberg, Germany. http://dx.doi.org/10.1007/978-3-642-34100-7

    Book  MATH  Google Scholar 

  • do Val, J.B.R., Basar, T., 1999. Receding horizon control of jump linear systems and a macroeconomic policy problem. Journal of Economic Dynamics & Control, 23(8): 1099–1131. http://dx.doi.org/10.1016/S0165-1889(98)00058-X

    Article  MathSciNet  MATH  Google Scholar 

  • Fang, Y.W., Wu, Y.L., Wang, H.Q., 2012. Optimal Control Theory of Stochastic Jump System. National Defense Inustry Press, Beijing, China (in Chinese).

    Google Scholar 

  • Ghosh, M.K., Arapostathis, A., Marcus, S.L., 1997. Ergodic control of switching diffusions. SIAM Journal on Control and Optimization, 35(6): 1952–1988. http://dx.doi.org/10.1137/S0363012996299302

    Article  MathSciNet  MATH  Google Scholar 

  • Huan, R.H., Zhu, W.Q., Wu, Y.J., 2008. Nonlinear stochastic optimal bounded control of hysteretic systems with actuator saturation. Journal of Zhejiang University-SCIENCE A, 9(3):351–357. http://dx.doi.org/10.1631/jzus.A071275

    Article  MATH  Google Scholar 

  • Huang, D., Nguang, S.K., 2008. State feedback control of uncertain networked control systems with random time delays. IEEE Transactions on Automatic Control, 53(3): 829–834. http://dx.doi.org/10.1109/TAC.2008.919571

    Article  MathSciNet  Google Scholar 

  • Ji, Y.D., Chizeck, H.J., 1992. Jump linear quadratic Gaussian control in continuous time. IEEE Trans on Automatic Control, 37(12):1884–1892. http://dx.doi.org/10.1109/9.182475

    Article  MathSciNet  MATH  Google Scholar 

  • Kats, L., Krasovskii, N.N., 1960. On the stability of systems with random parameters. Journal of Applied Mathematics and Mechanics, 24(5):1225–1246. http://dx.doi.org/10.1016/0021-8928(60)90103-9

    Article  MATH  Google Scholar 

  • Khasminskii, R.Z., 1968. On the averaging principle for Itô stochastic differential equations. Kibernetka, 3:260–279.

    Google Scholar 

  • Krasovskii, N.N., Lidskii, E.A., 1961. Analytical design of controllers in systems with random attributes. Automation and Remote Control, 22(1-3):1021–1025.

    MathSciNet  Google Scholar 

  • Kushner, H., 1967. Stochastic Stability and Control. Academic Press, New York, USA.

    MATH  Google Scholar 

  • Luo, J.W., 2006. Comparison principle and stability of Ito stochastic differential delay equations with Poisson jump and Markovian switching. Nonlinear Analysis: Theory, Methods & Applications, 64(2):253–262. http://dx.doi.org/10.1016/j.na.2005.06.048

    Article  MathSciNet  MATH  Google Scholar 

  • Mariton, M., 1988. Almost sure and moment stability of jump linear systems. Systems & Control Letters, 11(5):393–397. http://dx.doi.org/10.1016/0167-6911(88)90098-9

    Article  MathSciNet  MATH  Google Scholar 

  • Meskin, N., Khorasani, K., 2009. Fault detection and isolation of discrete-time Markovian jump linear systems with application to a network of multi-agent systems having imperfect communication channels. Automatica, 45(9):2032–2040. http://dx.doi.org/10.1016/j.automatica.2009.04.020

    Article  MathSciNet  MATH  Google Scholar 

  • Natache, S.D.A., Vilma, A.O., 2004. State feedback fuzzymodel-based control for Markovian jump nonlinear systems. Revista Controle & Automacao, 15:279–290.

    Google Scholar 

  • Stoica, A., Yaesh, I., 2002. Jump Markovian-based control of wing deployment for an uncrewed air vehicle. Journal of Guidance, Control, and Dynamics, 25(2):407–411. http://dx.doi.org/10.2514/2.4896

    Article  Google Scholar 

  • Sworder, D., 1969. Feedback control of a class linear systems with jump parameters. IEEE Trans on Automatic Control, 14(1):9–14. http://dx.doi.org/10.1109/TAC.1969.1099088

    Article  MathSciNet  Google Scholar 

  • Ugrinovskii, V.A., Pota, H.R., 2005. Decentralized control of power systems via robust control of uncertain Markov jump parameter systems. International Journal of Control, 78(9):662–677. http://dx.doi.org/10.1080/00207170500105384

    Article  MathSciNet  MATH  Google Scholar 

  • Wonham, W.M., 1970. Random Differential Equations in Control Theory. Academic Press, New York, USA.

    MATH  Google Scholar 

  • Wu, S.T., 2007. The Theory of Stochastic Jump System and Its Application. Science Press, Beijing, China (in Chinese).

    Google Scholar 

  • Zhu, W.Q., 2006. Nonlinear stochastic dynamics and control in Hamiltonian formulation. Applied Mechanics Reviews, 59(4):230–248. http://dx.doi.org/10.1115/1.2193137

    Article  Google Scholar 

  • Zhu, W.Q., Lin, Y.K., 1991. Stochastic averaging of energy envelope. Journal of Engineering Mechanics, 117(8): 1890–1905. http://dx.doi.org/10.1061/(asce)0733-9399(1991)117:8(1890)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-hua Huan.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11272279, 11272201, 11321202, 11372271, 11432012, and 51175474)

ORCID: Rong-hua HUAN, http://orcid.org/0000-0003-4648-3805

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Ss., Zhu, Wq., Hu, Rc. et al. Stationary response of stochastically excited nonlinear systems with continuous-time Markov jump. J. Zhejiang Univ. Sci. A 18, 83–91 (2017). https://doi.org/10.1631/jzus.A1600176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1600176

Key words

CLC number

关键词

Navigation