Skip to main content
Log in

Design and fabrication of an surface acoustic wave resonator based on AlN/4H-SiC material for harsh environments

面向恶劣环境的基于AlN/4H-SiC 材料的声表面波谐振器设计与制作

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Surface acoustic wave (SAW) sensors and micro-electromechanical system (MEMS) technology provide a promising solution for measurement in harsh environments such as gas turbines. In this paper, a SAW resonator (size: 1107 μm× 721 μm) based on the AlN/4H-SiC multilayer structure is designed and simulated. A MEMS-compatible fabrication process is employed to fabricate the resonator. The results show that highly c-axis-oriented AlN thin films deposited on the 4H-SiC substrate are obtained, with that the diffraction peak of AlN is 36.10° and the lowest full width at half maximum (FWHM) value is only 1.19°. The test results of the network analyzer are consistent with the simulation curve, which is very encouraging and indicates that our work is a significant attempt to solve the measurement problems mainly including high temperature stability of sensitive structures and the heat transmission of leads in harsh environments. It is essential to get the best performance of SAW resonator, optimize and characterize the behaviors in high temperatures in future research.

抽象

目 的

在高温等恶劣工作环境下, 燃气轮机有着迫切的温度等工况参数的实时监测需求。声表面波(SAW)技术与微机电系统(MEMS)技术的结合可提供一种很有发展前景的解决方案。本文旨在探讨SAW 谐振器的设计与仿真方法, 研究高质量c 轴择优取向的AlN 压电薄膜制备工艺及与MEMS 工艺兼容的SAW 谐振器制作工艺, 并测试其电学性能以验证SAW 谐振器设计与制作的正确性与可行性。

创新点

1. 首次在耐高温材料AlN/4H-SiC 上设计、仿真及制作SAW 谐振器并测试电学性能; 2. 在4HSiC上得到了高质量c 轴择优取向的AlN 压电薄膜并开发了一套与MEMS 工艺兼容的SAW 谐振器制作工艺。

方 法

1. 通过对SAW 谐振器所有结构参数的设计与仿真, 得到谐振器的谐振频率与反谐振频率等(图2 和3); 2. 利用磁控溅射方法在4H-SiC衬底上溅射高质量c 轴择优取向的AlN 压电薄膜, 再利用光刻、湿法腐蚀等MEMS 工艺制作SAW 谐振器(图4); 3. 通过扫描电镜和X 射线衍射等手段, 检测AlN 压电薄膜质量(图5和6)及器件制作结果(图7); 4. 利用网络分析仪测试SAW 谐振器电学性能并与仿真结果相比较, 验证SAW谐振器设计仿真方法和MEMS制作工艺的可行性和有效性(图8)。

结 论

1. 基于耐高温材料AlN/4H-SiC, 成功设计并制作出SAW谐振器(尺寸: 1107 μm×721 μm); 2. 在4H-SiC 上得到了高质量c 轴择优取向的AlN 压电薄膜, 衍射峰为36.10°, 摇摆曲线半高宽仅1.19°; 3. SAW 谐振器电学性能测试结果与仿真结果一致, 证明其设计仿真方法正确有效、MEMS 制作工艺可行。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al tahtamouni, T.M., Lin, J.Y., Jiang, H.X., 2012. High quality AlN grown on double layer AlN buffers on SiC substrate for deep ultraviolet photodetectors. Applied Physics Letters, 101(19):192106. http://dx.doi.org/10.1063/1.4766732

    Article  Google Scholar 

  • Aubert, T., Elmazria, O., Assouar, B., et al., 2010. Surface acoustic wave devices based on AlN/sapphire structure for high temperature applications. Applied Physics Letters, 96(20):203503. http://dx.doi.org/10.1063/1.3430042

    Article  Google Scholar 

  • Aubert, T., Bardong, J., Legrani, O., et al., 2013. In situ hightemperature characterization of AlN-based surface acoustic wave devices. Journal of Applied Physics, 114(1): 014505. http://dx.doi.org/10.1063/1.4812565

    Article  Google Scholar 

  • Beshkova, M., Zakhariev, Z., Birch, J., et al., 2003. Sublimation epitaxy of AlN layers on 4H-SiC depending on the type of crucible. Journal of Materials Science: Materials in Electronics, 14(10):767–768. http://dx.doi.org/10.1023/A:1026184600220

    Google Scholar 

  • Chen, Z., Newman, S., Brown, D., et al., 2008. High quality AlN grown on SiC by metal organic chemical vapor deposition. Applied Physics Letters, 93(19):191906. http://dx.doi.org/10.1063/1.2988323

    Article  Google Scholar 

  • Cho, E., Mogilatenko, A., Brunner, F., et al., 2013. Impact of AlN nucleation layer on strain in GaN grown on 4H-SiC substrates. Journal of Crystal Growth, 371:45–49. http://dx.doi.org/10.1016/j.jcrysgro.2013.02.001

    Article  Google Scholar 

  • Du, X.Y., 2012. Design and Fabrication of a Prototype Aluminum Nitride-based Pressure Sensor with Finite Element Analysis and Validation. PhD Thesis, Wayne State University, Detroit, USA.

    Google Scholar 

  • Elmazria, O., Aubert, T., 2011. Wireless SAW sensor for high temperature applications: material point of view. SPIE Microtechnologies, International Society for Optics and Photonics, No.806602. http://dx.doi.org/10.1117/12.889165

    Google Scholar 

  • Ferro, G., Okumura, H., Yoshida, S., 2000. Growth mode of AlN epitaxial layers on 6H-SiC by plasma assisted molecular beam epitaxy. Journal of Crystal Growth, 209(2-3):415–418. http://dx.doi.org/10.1016/S0022-0248(99)00582-5

    Article  Google Scholar 

  • Fraga, M.A., Furlan, H., Pessoa, R.S., et al., 2014. Wide band gap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: an overview. Microsystem Technologies, 20(1):9–21. http://dx.doi.org/10.1007/s00542-013-2029-z

    Article  Google Scholar 

  • Greve, D.W., Chin, T.L., Zheng, P., et al., 2013. Surface acoustic wave devices for harsh environment wireless sensing. Sensors, 13(6):6910–6935. http://dx.doi.org/10.3390/s130606910

    Article  Google Scholar 

  • Iriarte, G.F., Reyes, D.F., Gonzalez, D., et al., 2011. Influence of substrate crystallography on the room temperature synthesis of AlN thin films by reactive sputtering. Applied Surface Science, 257(22):9306–9313. http://dx.doi.org/10.1016/j.apsusc.2011.05.025

    Article  Google Scholar 

  • Jiang, X.N., Kim, K., Zhang, S.J., et al., 2013. Hightemperature piezoelectric sensing. Sensors, 14(1):144–169. http://dx.doi.org/10.3390/s140100144

    Article  Google Scholar 

  • Kim, M., Ohta, J., Kobayashi, A., et al., 2008. Lowtemperature growth of high quality AlN films on carbon face 6H-SiC. physica status solidi (RRL)–Rapid Research Letters, 2(1):13–15. http://dx.doi.org/10.1002/pssr.200701246

    Article  Google Scholar 

  • Kitagawa, S., Miyake, H., Hiramatsu, K., 2014. High-quality AlN growth on 6H-SiC substrate using three dimensional nucleation by low-pressure hydride vapor phase epitaxy. Japanese Journal of Applied Physics, 53(5S1): 05FL03. http://dx.doi.org/10.7567/JJAP.53.05FL03

    Article  Google Scholar 

  • Kuang, X.P., Zhang, H.Y., Wang, G.G., et al., 2012. AlN films prepared on 6H–SiC substrates under various sputtering pressures by RF reactive magnetron sputtering. Applied Surface Science, 263:62–68. http://dx.doi.org/10.1016/j.apsusc.2012.08.121

    Article  Google Scholar 

  • Lin, C.M., Lien, W.C., Felmetsger, V.V., et al., 2010a. AlN thin films grown on epitaxial 3C–SiC (100) for piezoelectric resonant devices. Applied Physics Letters, 97(14): 141907. http://dx.doi.org/10.1063/1.3495782

    Article  Google Scholar 

  • Lin, C.M., Lien, W.C., Yen, T.T., et al., 2010b. Growth of highly c-axis oriented AlN films on 3C–SiC/Si substrate. Solid-State Sensors, Actuators, and Microsystems Workshop, p.324–327.

    Google Scholar 

  • Lin, C.M., Chen, Y.Y., Felmetsger, V.V., et al., 2013. Surface acoustic wave devices on AlN/3C-SiC/Si multilayer structures. Journal of Micromechanics and Microengineering, 23(2):025019. http://dx.doi.org/10.1088/0960-1317/23/2/025019

    Article  Google Scholar 

  • Liu, B.Q., Zhang, C.R., Ji, X.J., et al., 2014. An improved performance frequency estimation algorithm for passive wireless SAW resonant sensors. Sensors, 14(12):22261–22273. http://dx.doi.org/10.3390/s141222261

    Article  Google Scholar 

  • Liu, H.Y., Tang, G.S., Zeng, F., et al., 2013. Influence of sputtering parameters on structures and residual stress of AlN films deposited by DC reactive magnetron sputtering at room temperature. Journal of Crystal Growth, 363:80–85. http://dx.doi.org/10.1016/j.jcrysgro.2012.10.008

    Article  Google Scholar 

  • Liu, L., Edgar, J.H., 2002. Substrates for gallium nitride epitaxy. Materials Science and Engineering: R: Reports, 37(3):61–127. http://dx.doi.org/10.1016/S0927-796X(02)00008-6

    Article  Google Scholar 

  • Pisano, A.P., 2009. Harsh Environment Wireless MEMS Sensors for Energy & Power. Technical Report, Department of Electrical Engineering and Computer Science, University of California, Berkeley, USA.

    Google Scholar 

  • Senesky, D.G., 2013. Wide bandgap semiconductors for sensing within extreme harsh environments. ECS Transactions, 50(6):233–238. http://dx.doi.org/10.1149/05006.0233ecst

    Article  Google Scholar 

  • Senesky, D.G., Jamshidi, B., Cheng, K.B., et al., 2009. Harsh environment silicon carbide sensors for health and performance monitoring of aerospace systems: a review. IEEE Sensors Journal, 9(11):1472–1478. http://dx.doi.org/10.1109/JSEN.2009.2026996

    Article  Google Scholar 

  • Takagaki, Y., Santos, P.V., Wiebicke, E., et al., 2002. Superhigh-frequency surface-acoustic-wave transducers using AlN layers grown on SiC substrates. Applied Physics Letters, 81(14):2538–2540. http://dx.doi.org/10.1063/1.1509471

    Article  Google Scholar 

  • Thompson, H.A., 2004. Wireless and internet communications technologies for monitoring and control. Control Engineering Practice, 12(6):781–791. http://dx.doi.org/10.1016/j.conengprac.2003.09.002

    Article  Google Scholar 

  • Tungasmita, S., Birch, J., Persson, P.O.A., et al., 2000. Enhanced quality of epitaxial AlN thin films on 6H–SiC by ultra-high-vacuum ion-assisted reactive DC magnetron sputter deposition. Applied Physics Letters, 76(2):170–172. http://dx.doi.org/10.1063/1.125692

    Article  Google Scholar 

  • Wang, Z.P., Morimoto, A., Kawae, T., et al., 2011. Growth of preferentially-oriented AlN films on amorphous substrate by pulsed laser deposition. Physics Letters A, 375(33):3007–3011. http://dx.doi.org/10.1016/j.physleta.2011.06.043

    Article  Google Scholar 

  • Ye, X.S., Fang, L., Liang, B., et al., 2011. Studies of a highsensitive surface acoustic wave sensor for passive wireless blood pressure measurement. Sensors and Actuators A: Physical, 169(1):74–82. http://dx.doi.org/10.1016/j.sna.2011.05.022

    Article  Google Scholar 

  • You, Z., Wang, W.Z., Chen, S., et al., 2014. Applications of wireless MEMS sensing system in gas turbine and harsh environment. Acta Aeronautica et Astronautica Sinica, 35(8):2081–2090 (in Chinese). http://dx.doi.org/10.7527/S1000-6893.2014.0084

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng You.

Additional information

Project supported by the Tsinghua University Initiative Scientific Research Program (No. 20131089351), China

ORCID: Wei-zhong WANG, http://orcid.org/0000-0001-6909-0110

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Wz., Liang, J., Ruan, Y. et al. Design and fabrication of an surface acoustic wave resonator based on AlN/4H-SiC material for harsh environments. J. Zhejiang Univ. Sci. A 18, 67–74 (2017). https://doi.org/10.1631/jzus.A1600028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1600028

Keywords

关键词

CLC number

Navigation