Skip to main content
Log in

Assessment of the phase synchronization effect in modal testing during operation

相位同步对工况下模态测试的影响评估分析

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The impact-synchronous modal analysis (ISMA), which uses impact-synchronous time averaging (ISTA), allows modal testing to be performed during operation. ISTA is effective in filtering out the non-synchronous cyclic load component, its harmonics, and noises. However, it was found that at operating speeds that coincide with the natural modes, ISMA would require a high number of impacts to determine the dynamic characteristics of the system. This finding has subsequently reduced the effectiveness and practicality of ISMA. Preservation of signatures during ISTA depends on the consistency of their phase angles on every time block but not necessarily on their frequencies. Thus, the effect of phase angles with respect to impact is seen to be a very important parameter when performing ISMA on structures with dominant periodic responses due to cyclic load and ambient excitation. The responses from unaccounted forces that contain even the same frequency as that contained in the response due to impact are diminished with the least number of impacts when the phase of the periodic responses is not consistent with the impact signature for every impact applied. The assessment showed that a small number of averages are sufficient to eliminate the non-synchronous components with 98.48% improvement on simulation and 95.22% improvement on experimental modal testing when the phase angles with respect to impact are not consistent for every impact applied.

摘要

目的

通过研究证明激励信号的相位信息对同步激励 模态分析的重要性:当各激励信号的相位信息非一致时,采用较少次数的时间平均即可实现 对非激励-响应信号的滤除。

创新点

通过对比采用一致相位激励信号和非一致相位 激励信号下的频率响应函数,证明了当各激励 信号的相位信息非一致时,采用较少次数的时 间平均足以实现对非激励-响应信号的滤除。

方法

基于非一致相位信号的同步激励模态分析法。

结论

基于同步激励时间平均技术,通过对比采用一 致相位激励信号和非一致相位激励信号下的频 率响应函数,证明了当各激励信号的相位信息 非一致时,采用较少次数的时间平均足以实现 对非激励-响应信号的滤除。在仿真试验中,非 同步信号成分的滤除效果提升了98.48%;模态 分析试验中,滤除效果提升了95.22%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aenlle, M.L., Brincker, R., 2013. Modal scaling in operational modal analysis using a finite element model. International Journal of Mechanical Sciences, 76:86–101. http://dx.doi.org/10.1016/j.ijmecsci.2013.09.003

    Article  Google Scholar 

  • Bienert, J., Andersen, P., Aguirre, R.C., 2015. A harmonic peak reduction technique for operational modal analysis of rotating machinery. 6th International Operational Modal Analysis Conference, p.619–625.

    Google Scholar 

  • Bodeux, J.B., Golinval, J.C., 2001. Application of ARMAV models to the identification and damage detection of mechanical and civil engineering structures. Smart Materials and Structures, 10(3):479–489. http://dx.doi.org/10.1088/0964-1726/10/3/309

    Article  Google Scholar 

  • Brincker, R., Ventura, C., 2015. Introduction to Operational Modal Analysis. Wiley, p.1–16.

    Book  MATH  Google Scholar 

  • Brincker, R., Zhang, L., Andersen, P., 2000. Modal identification from ambient responses using frequency domain decomposition. Proceedings of the 18th International Modal Analysis Conference, p.625–630.

    Google Scholar 

  • Dilena, M., Morassi, A., 2004. Experimental modal analysis of steel concrete composite beams with partially damaged connection. Journal of Vibration and Control, 10(6):897–913. http://dx.doi.org/10.1177/1077546304041370

    Article  Google Scholar 

  • Ding, Y.L., Li, A.Q., 2008. Finite element model updating for the Runyang Cable-stayed Bridge tower using ambient vibration test results. Advances in Structural Engineering, 11(3):323–335. http://dx.doi.org/10.1260/136943308785082599

    Article  Google Scholar 

  • Ding, Y.L., Li, A.Q., Liu, T., 2008. Environmental variability study on the measured responses of Runyang Cablestayed Bridge using wavelet packet analysis. Science in China Series E: Technological Sciences, 51(5):517–528. http://dx.doi.org/10.1007/s11431-008-0043-7

    Article  MATH  Google Scholar 

  • Fayyadh, M.M., Razak, H.A., Ismail, Z., 2011. Combined modal parameters-based index for damage identification in a beamlike structure: theoretical development and verification. Archives of Civil and Mechanical Engineering, 11(3):587–609. http://dx.doi.org/10.1016/S1644-9665(12)60103-4

    Article  Google Scholar 

  • Garcia-Perez, A., Amezquita-Sanchez, J.P., Dominguez-Gonzalez, A., et al., 2013. Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(9):615–630. http://dx.doi.org/10.1631/jzus.A1300030

    Article  Google Scholar 

  • Guillaume, P., Verboven, P., Vanlanduit, S., 1998. Frequencydomain maximum likelihood identification of modal parameters with confidence intervals. Proceedings of the 23rd International Seminar on Modal Analysis, p.359–366.

    Google Scholar 

  • Guo, J., Chen, Y., Sun, B.N., 2005. Experimental study of structural damage identification based on WPT and coupling NN. Journal of Zhejiang University-SCIENCE A, 6(7):663–669. http://dx.doi.org/10.1007/BF02856170

    Article  Google Scholar 

  • He, J., Fu, Z.F., 2001. Modal Analysis. Butterworth-Heinemann, UK, p.1–11.

    Book  Google Scholar 

  • Ismail, Z., 2012. Application of residuals from regression of experimental mode shapes to locate multiple crack damage in a simply supported reinforced concrete beam. Measurement, 45(6):1455–1461. http://dx.doi.org/10.1016/j.measurement.2012.03.006

    Article  Google Scholar 

  • Ismail, Z., Ibrahim, Z., Ong, A., et al., 2012. Approach to reduce the limitations of modal identification in damage detection using limited field data for nondestructive structural health monitoring of a cable-stayed concrete bridge. Journal of Bridge Engineering, 17(6):867–875. http://dx.doi.org/10.1061/(Asce)Be.1943-5592.0000353

    Article  Google Scholar 

  • James, G.H., Carne, T.G., Lauffer, J.P., 1995. The natural excitation technique (NExT) for modal parameter extraction from operating structures. International Journal of Analytical and Experimental Modal Analysis, 10(4):260–277.

    Google Scholar 

  • Lardies, J., Larbi, N., 2001. Dynamic system parameter identification by stochastic realization methods. Journal of Vibration and Control, 7(5):711–728. http://dx.doi.org/10.1177/107754630100700506

    Article  MathSciNet  MATH  Google Scholar 

  • Le, T.P., Argoul, P., 2015. Distinction between harmonic and structural components in ambient excitation tests using the time-frequency domain decomposition technique. Mechanical Systems and Signal Processing, 52-53:29–45. http://dx.doi.org/10.1016/j.ymssp.2014.07.008

    Article  Google Scholar 

  • Li, A.Q., Ding, Y.L., Wang, H., et al., 2012. Analysis and assessment of bridge health monitoring mass data—progress in research/development of “Structural Health Monitoring”. Science China Technological Sciences, 55(8):2212–2224. http://dx.doi.org/10.1007/s11431-012-4818-5

    Article  Google Scholar 

  • Li, Z.J., Li, A.Q., Zhang, J., 2010. Effect of boundary conditions on modal parameters of the Run Yang Suspension Bridge. Smart Structures and Systems, 6(8): 905–920. http://dx.doi.org/10.12989/sss.2010.6.8.905

    Article  Google Scholar 

  • Magalhães, F., Cunha, A., Caetano, E., 2012. Vibration based structural health monitoring of an arch bridge: from automated OMA to damage detection. Mechanical Systems and Signal Processing, 28:212–228. http://dx.doi.org/10.1016/j.ymssp.2011.06.011

    Article  Google Scholar 

  • Maia, N.M.M., Silva, J.M.M., 1997. Theoretical and Experimental Modal Analysis. Research Studies Press, UK.

    Google Scholar 

  • Ong, Z.C., Kor, M.A.M.A., Brandt, A., 2015. Experimental validation of phase synchronisation effects in optimising impact-synchronous time averaging. 6th International Operational Modal Analysis Conference, p.551–558.

    Google Scholar 

  • Phillips, A.W., Allemang, R.J., 2003. An overview of MIMO-FRF excitation/averaging/processing techniques. Journal of Sound and Vibration, 262(3):651–675. http://dx.doi.org/10.1016/S0022-460x(03)00116-0

    Article  Google Scholar 

  • Rahman, A.G.A., Ong, Z.C., Ismail, Z., 2011a. Effectiveness of impact-synchronous time averaging in determination of dynamic characteristics of a rotor dynamic system. Measurement, 44(1):34–45. http://dx.doi.org/10.1016/j.measurement.2010.09.005

    Article  Google Scholar 

  • Rahman, A.G.A., Ong, Z.C., Ismail, Z., 2011b. Enhancement of coherence functions using time signals in modal analysis. Measurement, 44(10):2112–2123. http://dx.doi.org/10.1016/j.measurement.2011.08.003

    Article  Google Scholar 

  • Rahman, A.G.A., Ismail, Z., Noroozi, S., et al., 2014. Enhancement of impact-synchronous modal analysis with number of averages. Journal of Vibration and Control, 20(11):1645–1655. http://dx.doi.org/10.1177/1077546312475147

    Article  Google Scholar 

  • Rossmann, S., 1999. Development of Force Controlled Modal Testing on a Rotor Supported by Magnetic Bearing. MS Thesis, The Imperial College of Science, Technology and Medicine, University of London, UK.

    Google Scholar 

  • Timoshenko, S.P., Young, D.H., 1974. Vibration Problems in Engineering. John Wiley & Sons Inc.

    Google Scholar 

  • van Overschee, P., de Moor, B., 1996. Subspace Identification for Linear Systems: Theory–Implementation–Applications. Springer US, USA. http://dx.doi.org/10.1007/978-1-4613-0465-4

    Book  MATH  Google Scholar 

  • Wang, H., Zou, K.G., Li, A.Q., et al., 2010a. Parameter effects on the dynamic characteristics of a super-longspan triple-tower suspension bridge. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 11(5):305–316. http://dx.doi.org/10.1631/jzus.A0900496

    Article  Google Scholar 

  • Wang, H., Li, A.Q., Li, J., 2010b. Progressive finite element model calibration of a long-span suspension bridge based on ambient vibration and static measurements. Engineering Structures, 32(9):2546–2556. http://dx.doi.org/10.1016/j.engstruct.2010.04.028

    Article  Google Scholar 

  • Wang, H., Mao, J.X., Huang, J.H., et al., 2016. Modal identification of Sutong cable-stayed bridge during typhoon Haikui using wavelet transform method. Journal of Performance of Constructed Facilities, 30(5): 0000856. http://dx.doi.org/10.1061/(asce)cf.1943-5509.0000856

    Article  Google Scholar 

  • Wong, K.Y., 2004. Instrumentation and health monitoring of cable-supported bridges. Structural Control and Health Monitoring, 11(2):91–124. http://dx.doi.org/10.1002/stc.33

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Chao Ong.

Additional information

Project supported by the University of Malaya Research Grant (No. RP022D-2013AET), the Fundamental Research Grant Scheme (No. FP010-2014A), the Postgraduate Research Grant (No. PG011-2015A), the Advanced Shock and Vibration Research (ASVR) Group of University of Malaya, and other project collaborators

ORCID: Zhi Chao ONG, http://orcid.org/0000-0002-1686-3551

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, Z.C., Lim, H.C., Khoo, S.Y. et al. Assessment of the phase synchronization effect in modal testing during operation. J. Zhejiang Univ. Sci. A 18, 92–105 (2017). https://doi.org/10.1631/jzus.A1600003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1600003

Key words

CLC number

关键词

Navigation