Skip to main content
Log in

A numerical method for analyzing the permeability of heterogeneous geomaterials based on digital image processing

基于数字图像的非均匀岩土材料渗透系数研究

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

In this study, we propose a digital image processing technology for estimating the macro permeability property of heterogeneous geomaterials. The technology is based on a connected-component labeling algorithm and provides a novel and effective method for geometry vectorization and microstructure identification. A color photo of a soil and rock mixture (SRM) is taken as an example. Information about the distribution of aggregate and a vectorgraph, which can be used in numerical analysis, are obtained automatically. A numerical permeability test is carried out to estimate the macro permeability coefficient of the heterogeneous medium. The effects on macro permeability of three parameters, scale dependency, material heterogeneity and the rock fraction, are discussed. The results indicate that the SRM has a scale dependent property and the representative element volume (REV) length is about six times the maximum major axis of the aggregate. The heterogeneity parameter has a major effect on macro permeability characteristics within a certain range. There is a weak tendency for the macro permeability to decrease as the rock fraction increases. Although the rock fraction is not the only factor, it does have an influence on the macro permeability. We conclude that the novel method developed in this study has good prospects for widespread application in macro parameter estimation and related research fields.

摘要

目的

建立一种较为快速和快速确定非均匀岩土材料渗 透系数的方法。

创新点

建立了一种可以从图像到数值模型的数字图像方 法:通过拍照、CT 等手段获取岩土材料的图像, 进而通过数值分析确定等效参数。

方法

1. 将采集到彩色图像从RGB 空间转化到HSI 空 间,选取识别度较高的空间进行二值化处理; 2. 获取二值化图像后采用邻域标记算法标记,结 合本文提出的算法提取边界(图9 和10);3. 结 合边界修正算法对锯齿状边界进行修正(图11); 4. 确定表征细观几何模型(图12 和表1);5. 绘 制网格开展数值分析,确定宏观参数。

结论

1. 基于数值图像的非均匀岩土材料渗透系数确定 方法可以较为准确地估算渗透系数,可以为工程 设计提供初步依据。2. 非均匀岩土材料具有明显 的尺寸效应,随着尺寸增加,渗透率的变化逐渐 趋于稳定;当材料视为岩石和土体的二元介质 时,两种性质差异在10 倍以内对宏观特性的影 响较大,大于10 倍之后影响减弱。3. 岩土材料 渗透率随着内部块石含量的增加而减小,但是内 部块石的形态对渗透率也有一定的影响。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammouche, A., Breysse, D., Hornain, H., et al., 2000. A new image analysis technique for the quantitative assessment of microcracks in cement-based materials. Cement and Concrete Research, 30(1):25–35. http://dx.doi.org/10.1016/S0008-8846(99)00212-4

    Article  Google Scholar 

  • Armesto, J., Lubowiecka, I., Ordóñez, C., et al., 2009. FEM modeling of structures based on close range digital photogrammetry. Automation in Construction, 18(5):559–569. http://dx.doi.org/10.1016/j.autcon.2008.11.006

    Article  Google Scholar 

  • Bažant, Z.P., Tabbara, M.R., Kazemi, M.T., et al., 1990. Random particle model for fracture of aggregate or fiber composites. Journal of Engineering Mechanics, 116(8): 1686–1705. http://dx.doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686)

    Article  Google Scholar 

  • Bessa, I.S., Branco, V.T.C., Soares, J.B., 2012. Evaluation of different digital image processing software for aggregates and hot mix asphalt characterizations. Construction and Building Materials, 37:370–378. http://dx.doi.org/10.1016/j.conbuildmat.2012.07.051

    Article  Google Scholar 

  • Carroll, J.D., Abuzaid, W., Lambros, J., et al., 2013. High resolution digital image correlation measurements of strain accumulation in fatigue crack growth. International Journal of Fatigue, 57(12):140–150. http://dx.doi.org/10.1016/j.ijfatigue.2012.06.010

    Article  Google Scholar 

  • Chang, S., Zhang, S., 2007. Engineering Geology Handbook. China Architecture & Building Press, Beijing, China (in Chinese).

    Google Scholar 

  • Chaves, A., La Scalea, R., Colturato, A., et al., 2015. Using UAVs and digital image processing to quantify areas of soil and vegetation. Journal of Physics: Conference Series, 633(1):012112. http://dx.doi.org/10.1088/1742-6596/633/1/012112

    Google Scholar 

  • Chen, S., Yue, Z., Tham, L., 2004. Digital image-based numerical modeling method for prediction of inhomogeneous rock failure. International Journal of Rock Mechanics and Mining Sciences, 41(6):939–957. http://dx.doi.org/10.1016/j.ijrmms.2004.03.002

    Article  Google Scholar 

  • Chen, S., Yue, Z.Q., Tham, L.G., 2005. Digital image based numerical modeling method for heterogeneous geomaterials. Chinese Journal of Geotechnical Engineering, 27(8):956–964.

    Google Scholar 

  • Chen, S., Yue, Z.Q., Tham, L.G., 2007. Digital image based approach for three-dimensional mechanical analysis of heterogeneous rocks. Rock Mechanics and Rock Engineering, 40(2):145–168. http://dx.doi.org/10.1007/s00603-006-0105-8

    Article  Google Scholar 

  • Chena, S., Yueb, Z.Q., Kwan, A., 2013. Actual microstructurebased numerical method for mesomechanics of concrete. Computers and Concrete, 12(1):1–18. http://dx.doi.org/10.12989/cac.2013.12.1.001

    Article  Google Scholar 

  • Frey, P.J., George, P.L., 2010. Mesh Generation. John Wiley & Sons, New York, USA.

    MATH  Google Scholar 

  • Gonzalez, R.C., Woods, R.E., Eddins, S.L., 2009. Digital Image Processing Using MATLAB, 2nd Edition. Publishing House of Electronics Industry, Beijing, China.

    Google Scholar 

  • Haralick, R.M., Shapiro, L.G., 1991. Glossary of computer vision terms. Pattern Recognition, 24(1):69–93. http://dx.doi.org/10.1016/0031-3203(91)90117-N

    Article  Google Scholar 

  • Johnson, N.L., Kotz, S., Balakrishnan, N., 2002. Continuous Multivariate Distributions: Volume 1, Models and Applications. John Wiley & Sons, New York, USA.

    Google Scholar 

  • Kameda, A., 2004. Permeability Evolution in Sandstone: Digital Rock Approach. PhD Thesis, Stanford University, CA, USA.

    Google Scholar 

  • Kemeny, J., Mofya, E., Kaunda, R., et al., 2010. Improvements in blast fragmentation models using digital image processing. Fragblast, 6(3):311–320. http://dx.doi.org/10.1076/frag.6.3.311.14051

    Google Scholar 

  • Khan, M.B., Xue, Y.L., Nisar, H., et al., 2015. Digital image processing and analysis for activated sludge wastewater treatment. Advances in Experimental Medicine & Biology, 823:227–248. http://dx.doi.org/10.1007/978-3-319-10984-8_13

    Article  Google Scholar 

  • Kwan, A.K.H., Wang, Z.M., Chan, H.C., 1999a. Mesoscopic study of concrete II: nonlinear finite element analysis. Computers & Structures, 70(5):545–556. http://dx.doi.org/10.1016/S0045-7949(98)00178-3

    Article  MATH  Google Scholar 

  • Kwan, A.K.H., Mora, C.F., Chan, H.C., 1999b. Particle shape analysis of coarse aggregate using digital image processing. Cement and Concrete Research, 29(9):1403–1410. http://dx.doi.org/10.1016/S0008-8846(99)00105-2

    Article  Google Scholar 

  • Li, A., Shao, G.J., Yu, T.T., et al., 2014. Mesoscopic numerical simulation of stratified rock failure using digital image processing. Advances in Mechanical Engineering, 2014(12):1–12. http://dx.doi.org/10.1155/2014/106073

    Google Scholar 

  • Mariño, A., Luthin, J.N., 1982. Seepage and Groundwater. Elsevier Science, the Netherlands.

    Google Scholar 

  • Michailidis, N., Stergioudi, F., Omar, H., et al., 2010. An image-based reconstruction of the 3D geometry of an Al open-cell foam and FEM modeling of the material response. Mechanics of Materials, 42(2):142–147. http://dx.doi.org/10.1016/j.mechmat.2009.10.006

    Article  Google Scholar 

  • Pitas, I., 2000. Digital Image Processing Algorithms and Applications. John Wiley & Sons, New York, USA.

    MATH  Google Scholar 

  • Rushton, K.R., 2004. Groundwater Hydrology: Conceptual and Computational Models. John Wiley & Sons, New York, USA.

    Google Scholar 

  • Sezgin, M., Sankur, B., 2004. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13(1):146–168. http://dx.doi.org/10.1117/1.1631315

    Article  Google Scholar 

  • Sharma, G., Bala, R., 2002. Digital Color Imaging Handbook. Taylor & Francis, UK.

    Book  Google Scholar 

  • Skoczylas, F., Henry, J.P., 1995. A study of the intrinsic permeability of granite to gas. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(2):171–179. http://dx.doi.org/10.1016/0148-9062(94)00022-U

    Article  Google Scholar 

  • Smith, I.M., Griffiths, D.V., Margetts, L., 2013. Programming the Finite Element Method. John Wiley & Sons, New York, USA.

    MATH  Google Scholar 

  • Steinberg, E., Prilutsky, Y., Corcoran, P., et al., 2010. Digital Image Processing Using Face Detection Information. US Patent 7574016.

    Google Scholar 

  • Venkatramaiah, C., 2006. Geotechnical Engineering. New Age International (P) Limited, New Delhi, India.

    Google Scholar 

  • Wang, X.F., Yang, Z.J., Yates, J., et al., 2015. Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores. Construction and Building Materials, 75:35–45. http://dx.doi.org/10.1016/j.conbuildmat.2014.09.069

    Article  Google Scholar 

  • Wang, Z.M., Kwan, A., Chan, H.C., 1999. Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh. Computers & Structures, 70(5): 533–544. http://dx.doi.org/10.1016/S0045-7949(98)00177-1

    Article  MATH  Google Scholar 

  • Wilson, J.N., Ritter, G.X., 2000. Handbook of Computer Vision Algorithms in Image Algebra. Taylor & Francis, UK.

    MATH  Google Scholar 

  • Xu, J.M., Zhao, X.B., Liu, B., 2007. Digital image analysis of fluid inclusions. International Journal of Rock Mechanics and Mining Sciences, 44(6):942–947. http://dx.doi.org/10.1016/j.ijrmms.2007.01.003

    Article  Google Scholar 

  • Xu, W.J., Hu, R.L., Wang, Y.P., 2007. PFC2D model for mesostructure of inhomogeneous geomaterial based on digital image processing. Journal of China Coal Society, 32(4):358–362 (in Chinese).

    Google Scholar 

  • Xu, W.J., Hu, R.L., Yue, Z.Q., 2008a. Meso-structure character of soil-rock mixtures based on digital image. Journal of Liaoning Technical University (Natural Science), 27(1): 51–53 (in Chinese).

    Google Scholar 

  • Xu, W.J., Yue, Z.Q., Hu, R.L., 2008b. Study on the mesostructure and mesomechanical characteristics of the soil–rock mixture using digital image processing based finite element method. International Journal of Rock Mechanics and Mining Sciences, 45(5):749–762. http://dx.doi.org/10.1016/j.ijrmms.2007.09.003

    Article  Google Scholar 

  • Xu, Y., Gao, Q., Li, X., et al., 2009. In-situ experimental study of permeability of rock and soil aggregates. Rock and Soil Mechanics, 30(3):855–858 (in Chinese).

    Google Scholar 

  • Yu, Q.L., Tang, C.A., Zhu, W.C., et al., 2006. Digital image processing based modeling of rock failure in meso-scale. Mechanics in Engineering, 28(4):60–64. http://dx.doi.org/10.6052/1000-0992-2005-339

    Google Scholar 

  • Yu, Q.L., Tang, C.A., Tang, S.B., 2007. Digital image based characterization method of rock’s heterogeneity and its primary application. Chinese Journal of Rock Mechanics & Engineering, 26(3):551–559 (in Chinese).

    Google Scholar 

  • Yu, Q.L., Zheng, C., Yang, T.H., et al., 2012. Meso-structure characterization based on coupled thermal-mechanical model for rock failure process and applications. Chinese Journal of Rock Mechanics & Engineering, 31(1):42–51 (in Chinese).

    Google Scholar 

  • Yue, Z.Q., Bekking, W., Morin, I., 1995. Application of digital image processing to quantitative study of asphalt concrete microstructure. Transportation Research Record, 1492: 53–60.

    Google Scholar 

  • Yue, Z.Q., Chen, S., Tham, L., 2003. Finite element modeling of geomaterials using digital image processing. Computers and Geotechnics, 30(5):375–397. http://dx.doi.org/10.1016/S0266-352X(03)00015-6

    Article  Google Scholar 

  • Yue, Z.Q., Chen, S., Zheng, H., et al., 2004. Digital image proceeding based on finite element method for geomaterials. Chinese Journal of Rock Mechanics and Engineering, 23(6):889–897 (in Chinese).

    Google Scholar 

  • Zeng, Q.L., Wang, J.G., Wang, L., et al., 2013. The research of coal mine conveyor belt tearing based on digital image processing. Proceedings of the 2012 International Conference on Communication, Electronics and Automation Engineering, p.187–191. http://dx.doi.org/10.1007/978-3-642-31698-2_27

    Chapter  Google Scholar 

  • Zhou, Z., Fu, H.L., Liu, B.C., et al., 2006. Experimental study of the permeability of soil-rock-mixture. Journal of Hunan University (Natural Sciences), 33(6):25–28 (in Chinese).

    Google Scholar 

  • Zhu, W.C., Kang, Y.M., Yang, T.H., et al., 2006. Application of digital image-based heterogeneity characterization in coupled hydromechanics of rock. Chinese Journal of Geotechnical Engineering, 28(12):2087–2091 (in Chinese).

    Google Scholar 

  • Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z., 2013. The Finite Element Method: Its Basis and Fundamentals. Elsevier Science, the Netherlands.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-xiang Meng.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11272113, 51479049, and 51679069) and the Jiangsu Provincial Natural Science Foundation of China (No. BK2012809)

ORCID: Long YAN, http://orcid.org/0000-0001-6099-5925; Qing-xiang MENG, http://orcid.org/0000-0002-8771-5177

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Meng, Qx., Xu, Wy. et al. A numerical method for analyzing the permeability of heterogeneous geomaterials based on digital image processing. J. Zhejiang Univ. Sci. A 18, 124–137 (2017). https://doi.org/10.1631/jzus.A1500335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1500335

Key words

CLC number

关键词

Navigation