Skip to main content
Log in

Skin friction reduction characteristics of variable ovoid non-smooth surfaces

变异卵圆形凹坑非光滑表面的气动摩擦减阻研究

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The use of bionic non-smooth surfaces is a popular approach for saving energy because of their drag reduction property. Conventional non-smooth structures include riblets and dimples. Inspired by sand dunes, a novel variable ovoid nonsmooth structure is proposed in this study. The body of the variable ovoid dimple was designed based on three size parameters, the radius, semimajor, and depth, and a 3D model was created based on UG software. The constructed variable dimples were placed in a rectangular array on the bottom of a square tube model. Following ANSYS meshing, the grid model was imported into FLUENT, where the flow characteristics were calculated. Results of skin friction reduction were achieved and the effect of the design parameters on different variable ovoid dimples was obtained by orthogonal testing. Various aspects of the skin friction reduction mechanism were discussed including the distribution of velocity vectors, variation in boundary layer thickness, and pressure distribution.

抽象

目 的

仿生非光滑表面具有降低表面摩擦阻力的作用, 传统的非光滑结构有沟槽和凹坑等。本文旨在研究变异卵圆形凹坑非光滑表面的气动摩擦减阻特性及其减阻机理。

创新点

1. 以仿生学理论为基础, 提出变异卵圆形凹坑结构模型, 突破现有非光滑结构类型的局限; 2. 采用参数构造的方法研究变异卵圆形各构造参数对表面摩擦阻力减阻的影响。

方 法

1. 采用半径、半轴和坑深3 个尺寸参数对变异卵圆凹坑结构进行几何定义, 并将非光滑结构以一定纵向间距按矩形排布布置在仿真模型底部; 2. 以3 个尺寸参数和纵向间距设计“三水平四因素”正交实验, 在不同气流流速下进行数值模拟仿真; 3. 通过速度矢量、边界层厚度变化和压力分布研究变异卵圆形凹坑非光滑表面的气动摩擦减阻机理。

结 论

1. 变异卵圆形非光滑表面具有一定的气动摩擦减阻效果, 和光滑表面相比, 在空气来流速度为24 m/s 时, 有10%的减阻效果; 2. 正交实验分析表明, 4 个试验因素对减阻效果的影响从大到小排列分别为: 半径、坑深、半轴和纵向间距; 3. 变异卵圆形凹坑表面增加了边界层的厚度, 降低了近壁面区域的速度梯度, 减少了剪切力, 从而起到了减少摩擦阻力的效果。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bixler, G.D., Bhushan, B., 2013. Shark skin inspired lowdrag microstructured surfaces in closed channel flow. Journal of Colloid and Interface Science, 393:384–396. http://dx.doi.org/10.1016/j.jcis.2012.10.061

    Article  Google Scholar 

  • Boiko, A.V., Jung, K.H., Chun, H.H., et al., 2007. Effect of riblets on the streaky structures excited by free stream tip vortices in boundary layer. Journal of Mechanical Science and Technology, 21(1):196–206. http://dx.doi.org/10.1007/BF03161725

    Article  Google Scholar 

  • Bourisli, R.I., Al-Sahhaf, A.A., 2008. CFD modeling of turbulent boundary layer flow in passive drag-reducing applications. 7th International Conference on Advances in Fluid Mechanics, p.79–90. http://dx.doi.org/10.2495/AFM080081

    Google Scholar 

  • Bullen, R.D., McKenzie, N.L., 2008. The pelage of bats (Chiroptera) and the presence of aerodynamic riblets: the effect on aerodynamic cleanliness. Zoology, 111(4):279–286. http://dx.doi.org/10.1016/j.zool.2007.09.001

    Article  Google Scholar 

  • Choi, J., Jeon, W., Choi, H., 2006. Mechanism of drag reduction by dimples on a sphere. Physics of Fluids, 18(4): 041702. http://dx.doi.org/10.1063/1.2191848

    Article  Google Scholar 

  • Dean, B., Bhushan, B., 2010. Shark-skin surfaces for fluiddrag reduction in turbulent flow: a review. Advance in Mechanics, 368(1929):4775–4806. http://dx.doi.org/10.1098/rsta.2010.0201

    Google Scholar 

  • Dean, B., Bhushan, B., 2012. The effect of riblets in rectangular duct flow. Applied Surface Science, 258(8):3936–3947. http://dx.doi.org/10.1016/j.apsusc.2011.12.067

    Article  Google Scholar 

  • Gao, G., Huang, N., 1982. Theoretical and experimental study in stability of the barchan dune vortex flame. Journal of Engineering Thermophysics, 3(1):89–95 (in Chinese).

    Article  Google Scholar 

  • Gu, Y.Q., Zhao, G., Liu, H., et al., 2013. Characteristics of drag reduction of bionic dimpled surface of shell rubber ring of aerodynamic extinguishing cannon. Journal of Jilin University (Engineering and Technology Edition), 43(4):983–990 (in Chinese).

    Google Scholar 

  • Kim, J., Choi, H., 2014. Aerodynamics of a golf ball with grooves. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 228(4):233–241. http://dx.doi.org/10.1177/1754337114543860

    Google Scholar 

  • Matthews, J.N.A., 2008. Low-drag suit propels swimmers. Physics Today, 61(8):32–33. http://dx.doi.org/10.1063/1.2970208

    Article  Google Scholar 

  • Ren, L.Q., 2009. Progress in the bionic study on antiadhesion and resistance reduction of terrain machines. Science in China Series E: Technological Sciences, 52(2):273–284. http://dx.doi.org/10.1007/s11431-009-0042-3

    Article  Google Scholar 

  • Song, X.W., Zhang, G.G., Wang, Y., et al., 2011. Use of bionic inspired surfaces for aerodynamic drag reduction on motor vehicle body panels. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(7):543–551. http://dx.doi.org/10.1631/jzus.A1000505

    Article  Google Scholar 

  • Viswanath, P.R., 2002. Aircraft viscous drag reduction using riblets. Progress in Aerospace Sciences, 38(6-7):571–600. http://dx.doi.org/10.1016/S0376-0421(02)00048-9

    Article  Google Scholar 

  • Zhang, C.C., Ren, L.Q., Liu, Q.P., et al., 2008. Experimental study on bionic dimpled surfaces of bodies of revolution for drag reduction. Acta Aerodynamica Sinica, 26(1):79–84 (in Chinese). http://dx.doi.org/10.3969/j.issn.0258-1825.2008.01.015

    Google Scholar 

  • Zhang, D.Y., Luo, Y.H., Li, X., et al., 2011. Numerical simulation and experimental study of drag-reducing surface of a real shark skin. Journal of Hydrodynamics, Ser. B, 23(2):204–211. http://dx.doi.org/10.1016/S1001-6058(10)60105-9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-wen Song.

Additional information

Project supported by the National Natural Science Foundation of China (No. 51375439)

ORCID: Xiao-wen SONG, http://orcid.org/0000-0001-6386-9836

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Xw., Lin, Pz., Liu, R. et al. Skin friction reduction characteristics of variable ovoid non-smooth surfaces. J. Zhejiang Univ. Sci. A 18, 59–66 (2017). https://doi.org/10.1631/jzus.A1500324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1500324

Keywords

关键词

CLC number

Navigation