Skip to main content
Log in

Modeling and loading compensation of a rotary valve-controlled pitch system for wind turbines

旋转阀控马达变桨距的建模与载荷补偿的对比性实验研究

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

A rotary valve-controlled pitch system is proposed to regulate the generator power and smooth power fluctuations for a wind turbine. Design details and dynamic modeling of this pitch system are presented and analyzed. A practical loading compensation approach is synthesized and involved in the pitch system to compensate for the external uncertain pitch loads. The proposed pitch system and loading compensation approach have been experimentally evaluated in terms of generator power smoothing and control accuracy. As demonstrated by the comparative experimental results, the proposed pitch system can be used to significantly smooth the generator power fluctuations and hence to improve the power quality as compared with a servo valve-controlled pitch system under the same operating conditions. The loading compensation approach can also be used to significantly attenuate the effects of external pitch loads and improve the robustness and reliability of the pitch system. The proposed pitch system features good control accuracy and cost-efficiency and hence is attractive for applications in modern largescale wind turbines.

中文概要

目的

风速的随机瞬变容易导致风电机组输出功率的大幅波动。本文拟采用数字旋转阀控马达变桨距技术,以有效地提高各种风况下的风电机组输出功率平滑控制的性能,并采用变桨载荷补偿的方法,以提高变桨距控制的精度和抗干扰能力。

创新点

1. 提出数字式旋转阀控马达变桨距的控制技术,推导得出变桨距控制的模型;2. 提出变桨距载荷补偿的控制方法,以提高变桨距控制的精度和鲁棒性;3. 搭建实验台,并与伺服阀控马达变桨距进行功率平滑控制的对比性研究。

方法

1. 通过理论推导,构建旋转阀控马达变桨距的机理模型,得到输出桨距角与输入控制信号之间的定量关系;2. 通过对比性实验分析,验证旋转阀控马达变桨距在输出功率平滑控制方面的高效性。

结论

1. 相比于伺服控马达,数字式旋转阀控马达变桨距能更有效地平滑风电机组的输出功率,提高输出功率的稳定性和质量;2. 变桨载荷补偿的方法能更为有效地提高旋转阀控马达变桨距控制的精度、响应速度和鲁棒性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelkafi, A., Krichen, L., 2011. New strategy of pitch angle control for energy management of a wind farm. Energy, 36(3): 1470–1479. http://dx.doi.org/10.1016/j.energy.2011.01.021

    Article  Google Scholar 

  • Anaya Lara, O., Jenkins, N., Ekanayake, J.B., 2009. Wind Energy Generation: Modelling and Control. John Wiley and Sons, Chichester, UK.

    Google Scholar 

  • Astrom, K.J., Hagglund, T., 1995. PID Controller: Theory, Design, and Tuning. Instrument Society of America, Research Triangle Park, Durham, USA.

    Google Scholar 

  • Belghazi, O., Cherkaoui, M., 2012. Pitch angle control for variable speed wind turbines using genetic algorithm controller. Journal of Theoretical and Applied Information Technology, 39(1): 6–10.

    Google Scholar 

  • Bishop, R.H., Dorf, R.C., 2004. Modern Control Systems. Prentice Hall College Division, UK.

    MATH  Google Scholar 

  • Bossanyi, E.A., 2000. Bladed for Windows User Manual. Garrad Hassan and Partners, Bristol, UK.

    Google Scholar 

  • Duong, M.Q., Grimaccia, F., Leva, S., et al., 2014. Pitch angle control using hybrid controller for all operating regions of SCIG wind turbine system. Renewable Energy, 70: 197–203. http://dx.doi.org/10.1016/j.renene.2014.03.072

    Article  Google Scholar 

  • Duong, M.Q., Grimaccia, F., Leva, S., et al., 2015. Improving transient stability in a grid-connected squirrel-cage induction generator wind turbine system using a fuzzy logic controller. Energies, 8(7): 6328–6349. http://dx.doi.org/10.3390/en8076328

    Article  Google Scholar 

  • Jelali, M., Kroll, A., 2003. Hydraulic Servo-systems: Modelling, Identification and Control. Springer-Verlag, London, UK. http://dx.doi.org/10.1007/978-1-4471-0099-7

    Book  Google Scholar 

  • Kragh, K.A., Hansen, M.H., 2012. Individual pitch control based on local and upstream inflow measurements. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. http://dx.doi.org/10.2514/6.2012-1021

    Google Scholar 

  • Lin, W.M., Hong, C.M., Ou, T.C., et al., 2011. Hybrid intelligent control of PMSG wind generation system using pitch angle control with RBFN. Energy Conversion and Management, 52(2): 1244–1251. http://dx.doi.org/10.1016/j.enconman.2010.09.020

    Article  Google Scholar 

  • Merritt, H.E., 1967. Hydraulic Control Systems. Wiley, New York, USA.

    Google Scholar 

  • Poultangari, I., Shahnazi, R., Sheikhan, M., 2012. RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm. ISA Transactions, 51(5): 641–648. http://dx.doi.org/10.1016/j.isatra.2012.06.001

    Article  Google Scholar 

  • Senjvu, T., Sakamoto, R., Urasaki, N., et al., 2006. Output power leveling of wind farm using pitch angle control with fuzzy neural network. IEEE Power Engineering Society General Meeting, p.1–8.

    Google Scholar 

  • Wang, J., Tse, N., Gao, Z., 2011. Synthesis on PI-based pitch controller of large wind turbines generator. Energy Conversion and Management, 52(2): 1288–1294. http://dx.doi.org/10.1016/j.enconman.2010.09.026

    Article  Google Scholar 

  • Yin, X.X., Lin, Y.G., Li, W., 2014a. Integrated pitch control for wind turbine based on a novel pitch control system. Journal of Renewable and Sustainable Energy, 6(4): 043106. http://dx.doi.org/10.1063/1.4890566

    Article  Google Scholar 

  • Yin, X.X., Lin, Y.G., Li, W., 2014b. Output power control for hydro-viscous transmission based continuously variable speed wind turbine. Renewable Energy, 72: 395–405. http://dx.doi.org/10.1016/j.renene.2014.07.010

    Article  Google Scholar 

  • Yin, X.X., Lin, Y.G., Li, W., 2015. Adaptive back-stepping pitch angle control for wind turbine based on a new electro-hydraulic pitch system. International Journal of Control, 88(11): 2316–2326. http://dx.doi.org/10.1080/00207179.2015.1041554

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, D., 2013. Improved control of individual blade pitch for wind turbines. Sensors & Actuators A: Physical, 198: 8–14. http://dx.doi.org/10.1016/j.sna.2013.04.020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-gang Lin.

Additional information

Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 51221004), the National Natural Science Foundation of China (No. 51275448), and the Fundamental Research Funds for the Central Universities (No. 2015QNA4005), China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Xx., Lin, Yg. & Li, W. Modeling and loading compensation of a rotary valve-controlled pitch system for wind turbines. J. Zhejiang Univ. Sci. A 18, 718–727 (2017). https://doi.org/10.1631/jzus.A1500072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1500072

Key words

关键词

CLC number

Navigation