Location optimization of multiple distribution centers under fuzzy environment
- 330 Downloads
- 14 Citations
Abstract
Locating distribution centers optimally is a crucial and systematic task for decision-makers. Optimally located distribution centers can significantly improve the logistics system’s efficiency and reduce its operational costs. However, it is not an easy task to optimize distribution center locations and previous studies focused primarily on location optimization of a single distribution center. With growing logistics demands, multiple distribution centers become necessary to meet customers’ requirements, but few studies have tackled the multiple distribution center locations (MDCLs) problem. This paper presents a comprehensive algorithm to address the MDCLs problem. Fuzzy integration and clustering approach using the improved axiomatic fuzzy set (AFS) theory is developed for location clustering based on multiple hierarchical evaluation criteria. Then, technique for order preference by similarity to ideal solution (TOPSIS) is applied for evaluating and selecting the best candidate for each cluster. Sensitivity analysis is also conducted to assess the influence of each criterion in the location planning decision procedure. Results from a case study in Guiyang, China, reveals that the proposed approach developed in this study outperforms other similar algorithms for MDCLs selection. This new method may easily be extended to address location planning of other types of facilities, including hospitals, fire stations and schools.
Key words
Multiple distribution centers Location selection Clustering algorithm Axiomatic fuzzy set (AFS) Technique for order preference by similarity to ideal solution (TOPSIS)CLC number
U121Preview
Unable to display preview. Download preview PDF.
References
- Awasthi, A., Chauhan, S.S., Goyal, S.K., 2011. A multi-criteria decision making approach for location planning for urban distribution centers under uncertainty. Mathematical and Computer Modeling, 53(1):98–109. [doi:10.1016/j.mcm.2010.07.023]MathSciNetMATHCrossRefGoogle Scholar
- Buckley, J.J., 1985. Ranking alternatives using fuzzy numbers. Fuzzy Sets and Systems, 15(1):21–31. [doi:10.1016/ 0165-0114(85)90013-2]MathSciNetMATHCrossRefGoogle Scholar
- Chen, C.T., 2001. A fuzzy approach to select the location of distribution center. Fuzzy Sets and Systems, 118(1):65–73. [doi:10.1016/S0165-0114(98)00459-X]MathSciNetMATHCrossRefGoogle Scholar
- Chou, C.C., 2009. Integrated short-term and long-term MCDM model for solving location selection problem. Journal of Transportation Engineering, 135(11):880–893. [doi:10. 1061/(ASCE)TE.1943-5436.0000057]CrossRefGoogle Scholar
- Chou, S.Y., Chang, Y.H., Shen, C.Y., 2008. A fuzzy simple additive weighting system under group decision making for facility location selection with objective/subjective attributes. European Journal of Operational Research, 189(1):132–145. [doi:10.1016/j.ejor.2007.05.006]MATHCrossRefGoogle Scholar
- Chu, T.C., 2002. Facility location selection using fuzzy TOPSIS under group decisions. Fuzziness and Knowledge-Based Systems, 10(6):687–701. [doi:10.1142/S0218488502001739]MathSciNetMATHCrossRefGoogle Scholar
- Hakimi, S.L., Kuo, C.C., 1991. On a general network locationproduction-allocation problem. European Journal of Operational Research, 55(1):31–45. [doi:10.1016/0377-2217(91)90189-3]MATHCrossRefGoogle Scholar
- Hansen, P., Filho, E., Ribeiro, C.C., 1992. Location and sizing of offshore platforms for oil exploration. European Journal of Operational Research, 58(2):202–214. [doi:10.1016/0377-2217(92)90207-P]MATHCrossRefGoogle Scholar
- Heilpern, S., 1997. Representation and application of fuzzy numbers. Fuzzy Sets Systems, 91(2):259–268. [doi:10. 1016/S0165-0114(97)00146-2]MathSciNetMATHCrossRefGoogle Scholar
- José, L.P.T., Eugenio, P., Víctor, Y., 2012. Complete fuzzy scheduling and fuzzy earned value management in construction projects. Journal of Zhejiang University-SCIENCE A (Applied Physics and Engineering), 13(1): 56–68. [doi:10.1631/jzus.A1100160]Google Scholar
- Küçükaydin, H., Aras, N., Altınel, I.K., 2011. Competitive facility location problem with attractiveness adjustment of the follower: A bi-level programming model and its solution. European Journal of Operational Research, 208(3):206–220. [doi:10.1016/j.ejor.2010.08.009]MathSciNetMATHCrossRefGoogle Scholar
- Kahraman, C., Ruan, D., Dogan, I., 2003. Fuzzy group decision-making for facility location selection. Information Sciences, 157:135–153. [doi:10.1016/S0020-0255(03) 00183-X]MATHCrossRefGoogle Scholar
- Lee, C., 1993. The multiproduct warehouse location problem: applying a decomposition algorithm. International Journal of Physical Distribution & Logistics Management, 23(6):3–13. [doi:10.1108/09600039310044858]CrossRefGoogle Scholar
- Lee, D., Donnell, D., 2007. Analysis of nighttime drive behavior and pavement marking effects using fuzzy inference system. Journal of Computing in Civil Engineering, 21(3):200–210. [doi:10.1061/(ASCE)0887-3801(2007)21: 3(200)]CrossRefGoogle Scholar
- Li, R.J., 1999. Fuzzy method in group decision making. Computers & Mathematics with Applications, 38(1): 91–101. [doi:10.1016/S0898-1221(99)00172-8]MathSciNetMATHCrossRefGoogle Scholar
- Li, Y., Liu, X.D., Chen, Y., 2011. Selection of logistics center location using axiomatic fuzzy set and TOPSIS methodology in logistics management. Expert Systems with Applications, 38(6):7901–7908. [doi:10.1016/j.eswa.2010.12.161]CrossRefGoogle Scholar
- Liang, G.S., Wang, M.J.J., 1991. A fuzzy multi-criteria decision-making method for facility site selection. International Journal of Production Research, 29(11): 2313–2330. [doi:10.1080/00207549108948085]MATHCrossRefGoogle Scholar
- Lin, C.H., Ke, J.C., 2009. Optimal operating policy for a controllable queueing model with a fuzzy environment. Journal of Zhejiang University SCIENCE A, 10(2): 311–318. [doi:10.1631/jzus.A0820139]MATHCrossRefGoogle Scholar
- Liu, X.D., 1998a. The fuzzy theory based on AFS algebras and AFS structure. Journal of Mathematical Analysis and Applications, 217(2):459–478. [doi:10.1006/jmaa.1997.5718]MathSciNetMATHCrossRefGoogle Scholar
- Liu, X.D., 1998b. The fuzzy sets and systems based on AFS structure, EIalgebra and EII algebra. Fuzzy Sets and Systems, 95(2):179–188. [doi:10.1016/S0165-0114(96)00 298-9]MathSciNetMATHCrossRefGoogle Scholar
- Liu, X.D., Wang, W., Chai, T.Y., 2005. The fuzzy clustering analysis based on AFS theory. IEEE Transactions on Systems, Man and Cybernetics Part B, 35(5):1013–1027. [doi:10.1109/TSMCB.2005.847747]CrossRefGoogle Scholar
- Negi, D.S., 1984. Fuzzy Analysis and Optimization. PhD Thesis, Department of Industrial Engineering, Kansas State University, Kansas, USA.Google Scholar
- Shannon, C.E., 2001. A mathematical theory of communication. Mobile Computing and Communications Review, 5(1):3–55. [doi:10.1145/584091.584093]CrossRefGoogle Scholar
- Sun, H.J., Gao, Z.Y., Wu, J.J., 2008. A bi-level programming model and solution algorithm for the location of logistics distribution centers. Applied Mathematical Modelling, 32(4):610–616. [doi:10.1016/j.apm.2007.02.007]MathSciNetMATHCrossRefGoogle Scholar
- Syam, S.S., 2002. A model and methodologies for the location problem with logistical components. Computers and Operations Research, 29(9):1173–1193. [doi:10.1016/ S0305-0548(01)00023-5]MathSciNetMATHCrossRefGoogle Scholar
- Tyagi, R., Das, C., 1995. Manufacturer and warehouse selection for stable relationship in dynamic wholesaling and location problem. International Journal of Physical Distribution & Logistics Management, 25(6):54–72. [doi:10. 1108/09600039510093276]CrossRefGoogle Scholar
- Wang, Z.J., Qian, E.Y., 2007. A vague-set-based fuzzy multi-objective decision making model for bidding purchase. Journal of Zhejiang University SCIENCE A, 8(4): 644–650. [doi:10.1631/jzus.2007.A0644]MathSciNetMATHCrossRefGoogle Scholar
- Wey, W.M., Chang, Y.H., 2009. A comparative location study for the joint development station of a mass rapid transit system: A case in Taichung City. Environment and Planning B: Planning and Design, 36(4):573–587. [doi:10. 1068/b33135]CrossRefGoogle Scholar
- Yang, L.X., Ji, X.Y., Gao, Z.Y., Li, K.P., 2007. Logistics distribution centers location problem and algorithm under fuzzy environment. Journal of Computing and Applied Mathematics, 208(2):303–315. [doi:10.1016/j.cam.2006.09.015]MathSciNetMATHCrossRefGoogle Scholar
- Yu, J., Liu, Y., Chang, G.L., Ma, W.J., Yang, X.G., 2011. Locating urban transit hubs: multi-criteria model and case study in China. Journal of Transportation Engineering, 137(12):944–952. [doi:10.1061/(ASCE)TE.1943-5436.0000275]CrossRefGoogle Scholar
- Zadeh, L.A., 1965. Fuzzy sets. Information and Control, 8(3):338–353. [doi:10.1016/S0019-9958(65)90241-X]MathSciNetMATHCrossRefGoogle Scholar
- Zhang, Y.J., Liang, D.Q., Tong, S.C., 2004a. On AFS algebrapart I. Information Sciences, 167(1):263–286. [doi:10. 1016/j.ins.2004.02.017]MathSciNetMATHCrossRefGoogle Scholar
- Zhang, Y.J., Liang, D.Q., Tong, S.C., 2004b. On AFS algebrapart II. Information Sciences, 167(1):287–303. [doi:10. 1016/j.ins.2003.10.007]MathSciNetMATHCrossRefGoogle Scholar